Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2d Structured version   Unicode version

Theorem iota2d 5590
 Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1
iota2df.2
iota2df.3
Assertion
Ref Expression
iota2d
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2
2 iota2df.2 . 2
3 iota2df.3 . 2
4 nfv 1755 . 2
5 nfvd 1756 . 2
6 nfcvd 2581 . 2
71, 2, 3, 4, 5, 6iota2df 5589 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   wceq 1437   wcel 1872  weu 2269  cio 5563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-rex 2777  df-v 3082  df-sbc 3300  df-un 3441  df-sn 3999  df-pr 4001  df-uni 4220  df-iota 5565 This theorem is referenced by:  erov  7472  psgnvalii  17150  q1peqb  23104
 Copyright terms: Public domain W3C validator