MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooss2 Structured version   Unicode version

Theorem iooss2 11575
Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooss2  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )

Proof of Theorem iooss2
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 11543 . 2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
2 xrltletr 11370 . 2  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w  <  B  /\  B  <_  C )  ->  w  <  C
) )
31, 1, 2ixxss2 11558 1  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767    C_ wss 3481   class class class wbr 4452  (class class class)co 6294   RR*cxr 9637    < clt 9638    <_ cle 9639   (,)cioo 11539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-pre-lttri 9576  ax-pre-lttrn 9577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-1st 6794  df-2nd 6795  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-ioo 11543
This theorem is referenced by:  tgqioo  21150  ioorcl2  21826  itgsplitioo  22089  ditgcl  22107  ditgswap  22108  ditgsplitlem  22109  dvferm2lem  22232  dvferm  22234  dvlip  22239  dvgt0lem1  22248  dvivthlem1  22254  lhop1lem  22259  lhop1  22260  dvcvx  22266  dvfsumle  22267  dvfsumge  22268  dvfsumabs  22269  ftc1lem1  22281  ftc1lem2  22282  ftc1a  22283  ftc1lem4  22285  ftc2  22290  ftc2ditglem  22291  itgsubstlem  22294  ftc1anc  29993  ftc2nc  29994  limcresioolb  31476  fourierdlem46  31744  fourierdlem48  31746  fourierdlem49  31747  fourierdlem75  31773  fourierdlem103  31801  fourierdlem113  31811  fouriersw  31823
  Copyright terms: Public domain W3C validator