MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooshf Structured version   Unicode version

Theorem iooshf 11615
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 10038 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
213com13 1201 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
323expa 1196 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( C  +  B )  < 
A  <->  C  <  ( A  -  B ) ) )
43adantrr 716 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( C  +  B )  <  A  <->  C  <  ( A  -  B ) ) )
5 ltsubadd 10034 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  (
( A  -  B
)  <  D  <->  A  <  ( D  +  B ) ) )
65bicomd 201 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  ( A  <  ( D  +  B )  <->  ( A  -  B )  <  D
) )
763expa 1196 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR )  ->  ( A  < 
( D  +  B
)  <->  ( A  -  B )  <  D
) )
87adantrl 715 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  ( D  +  B )  <->  ( A  -  B )  <  D ) )
94, 8anbi12d 710 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( C  +  B )  < 
A  /\  A  <  ( D  +  B ) )  <->  ( C  < 
( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
10 readdcl 9587 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1110rexrd 9655 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR* )
1211ad2ant2rl 748 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( C  +  B
)  e.  RR* )
13 readdcl 9587 . . . . . 6  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR )
1413rexrd 9655 . . . . 5  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR* )
1514ad2ant2l 745 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( D  +  B
)  e.  RR* )
16 rexr 9651 . . . . 5  |-  ( A  e.  RR  ->  A  e.  RR* )
1716ad2antrl 727 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  A  e.  RR* )
18 elioo5 11594 . . . 4  |-  ( ( ( C  +  B
)  e.  RR*  /\  ( D  +  B )  e.  RR*  /\  A  e. 
RR* )  ->  ( A  e.  ( ( C  +  B ) (,) ( D  +  B
) )  <->  ( ( C  +  B )  <  A  /\  A  < 
( D  +  B
) ) ) )
1912, 15, 17, 18syl3anc 1228 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
2019ancoms 453 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
21 rexr 9651 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
2221ad2antrl 727 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
23 rexr 9651 . . . 4  |-  ( D  e.  RR  ->  D  e.  RR* )
2423ad2antll 728 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
25 resubcl 9895 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2625rexrd 9655 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR* )
2726adantr 465 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR* )
28 elioo5 11594 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  ( A  -  B )  e. 
RR* )  ->  (
( A  -  B
)  e.  ( C (,) D )  <->  ( C  <  ( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
2922, 24, 27, 28syl3anc 1228 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
( C  <  ( A  -  B )  /\  ( A  -  B
)  <  D )
) )
309, 20, 293bitr4rd 286 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4453  (class class class)co 6295   RRcr 9503    + caddc 9507   RR*cxr 9639    < clt 9640    - cmin 9817   (,)cioo 11541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-ioo 11545
This theorem is referenced by:  sinq34lt0t  22768
  Copyright terms: Public domain W3C validator