MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Unicode version

Theorem ioorinv 22470
Description: The function  F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
Assertion
Ref Expression
ioorinv  |-  ( A  e.  ran  (,)  ->  ( (,) `  ( F `
 A ) )  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem ioorinv
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 11683 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2 ffn 5689 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3 ovelrn 6403 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( A  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b ) ) )
41, 2, 3mp2b 10 . . 3  |-  ( A  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  A  =  (
a (,) b ) )
5 ioorf.1 . . . . . . . . 9  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
65ioorinv2 22469 . . . . . . . 8  |-  ( ( a (,) b )  =/=  (/)  ->  ( F `  ( a (,) b
) )  =  <. a ,  b >. )
76fveq2d 5829 . . . . . . 7  |-  ( ( a (,) b )  =/=  (/)  ->  ( (,) `  ( F `  (
a (,) b ) ) )  =  ( (,) `  <. a ,  b >. )
)
8 df-ov 6252 . . . . . . 7  |-  ( a (,) b )  =  ( (,) `  <. a ,  b >. )
97, 8syl6eqr 2480 . . . . . 6  |-  ( ( a (,) b )  =/=  (/)  ->  ( (,) `  ( F `  (
a (,) b ) ) )  =  ( a (,) b ) )
10 df-ne 2601 . . . . . . . 8  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
11 neeq1 2663 . . . . . . . 8  |-  ( A  =  ( a (,) b )  ->  ( A  =/=  (/)  <->  ( a (,) b )  =/=  (/) ) )
1210, 11syl5bbr 262 . . . . . . 7  |-  ( A  =  ( a (,) b )  ->  ( -.  A  =  (/)  <->  ( a (,) b )  =/=  (/) ) )
13 fveq2 5825 . . . . . . . . 9  |-  ( A  =  ( a (,) b )  ->  ( F `  A )  =  ( F `  ( a (,) b
) ) )
1413fveq2d 5829 . . . . . . . 8  |-  ( A  =  ( a (,) b )  ->  ( (,) `  ( F `  A ) )  =  ( (,) `  ( F `  ( a (,) b ) ) ) )
15 id 22 . . . . . . . 8  |-  ( A  =  ( a (,) b )  ->  A  =  ( a (,) b ) )
1614, 15eqeq12d 2443 . . . . . . 7  |-  ( A  =  ( a (,) b )  ->  (
( (,) `  ( F `  A )
)  =  A  <->  ( (,) `  ( F `  (
a (,) b ) ) )  =  ( a (,) b ) ) )
1712, 16imbi12d 321 . . . . . 6  |-  ( A  =  ( a (,) b )  ->  (
( -.  A  =  (/)  ->  ( (,) `  ( F `  A )
)  =  A )  <-> 
( ( a (,) b )  =/=  (/)  ->  ( (,) `  ( F `  ( a (,) b
) ) )  =  ( a (,) b
) ) ) )
189, 17mpbiri 236 . . . . 5  |-  ( A  =  ( a (,) b )  ->  ( -.  A  =  (/)  ->  ( (,) `  ( F `  A ) )  =  A ) )
1918a1i 11 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  ( A  =  ( a (,) b )  ->  ( -.  A  =  (/)  ->  ( (,) `  ( F `  A ) )  =  A ) ) )
2019rexlimivv 2861 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b )  ->  ( -.  A  =  (/)  ->  ( (,) `  ( F `  A
) )  =  A ) )
214, 20sylbi 198 . 2  |-  ( A  e.  ran  (,)  ->  ( -.  A  =  (/)  ->  ( (,) `  ( F `  A )
)  =  A ) )
22 ioorebas 11687 . . . . . . 7  |-  ( 0 (,) 0 )  e. 
ran  (,)
235ioorval 22468 . . . . . . 7  |-  ( ( 0 (,) 0 )  e.  ran  (,)  ->  ( F `  ( 0 (,) 0 ) )  =  if ( ( 0 (,) 0 )  =  (/) ,  <. 0 ,  0 >. ,  <.inf ( ( 0 (,) 0
) ,  RR* ,  <  ) ,  sup ( ( 0 (,) 0 ) ,  RR* ,  <  ) >. ) )
2422, 23ax-mp 5 . . . . . 6  |-  ( F `
 ( 0 (,) 0 ) )  =  if ( ( 0 (,) 0 )  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( ( 0 (,) 0 ) ,  RR* ,  <  ) ,  sup ( ( 0 (,) 0 ) , 
RR* ,  <  ) >.
)
25 iooid 11615 . . . . . . 7  |-  ( 0 (,) 0 )  =  (/)
2625iftruei 3861 . . . . . 6  |-  if ( ( 0 (,) 0
)  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( ( 0 (,) 0 ) ,  RR* ,  <  ) ,  sup ( ( 0 (,) 0 ) ,  RR* ,  <  ) >. )  =  <. 0 ,  0
>.
2724, 26eqtri 2450 . . . . 5  |-  ( F `
 ( 0 (,) 0 ) )  = 
<. 0 ,  0
>.
2827fveq2i 5828 . . . 4  |-  ( (,) `  ( F `  (
0 (,) 0 ) ) )  =  ( (,) `  <. 0 ,  0 >. )
29 df-ov 6252 . . . 4  |-  ( 0 (,) 0 )  =  ( (,) `  <. 0 ,  0 >. )
3028, 29eqtr4i 2453 . . 3  |-  ( (,) `  ( F `  (
0 (,) 0 ) ) )  =  ( 0 (,) 0 )
3125eqeq2i 2440 . . . . . 6  |-  ( A  =  ( 0 (,) 0 )  <->  A  =  (/) )
3231biimpri 209 . . . . 5  |-  ( A  =  (/)  ->  A  =  ( 0 (,) 0
) )
3332fveq2d 5829 . . . 4  |-  ( A  =  (/)  ->  ( F `
 A )  =  ( F `  (
0 (,) 0 ) ) )
3433fveq2d 5829 . . 3  |-  ( A  =  (/)  ->  ( (,) `  ( F `  A
) )  =  ( (,) `  ( F `
 ( 0 (,) 0 ) ) ) )
3530, 34, 323eqtr4a 2488 . 2  |-  ( A  =  (/)  ->  ( (,) `  ( F `  A
) )  =  A )
3621, 35pm2.61d2 163 1  |-  ( A  e.  ran  (,)  ->  ( (,) `  ( F `
 A ) )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   E.wrex 2715   (/)c0 3704   ifcif 3854   ~Pcpw 3924   <.cop 3947    |-> cmpt 4425    X. cxp 4794   ran crn 4797    Fn wfn 5539   -->wf 5540   ` cfv 5544  (class class class)co 6249   supcsup 7907  infcinf 7908   RRcr 9489   0cc0 9490   RR*cxr 9625    < clt 9626   (,)cioo 11586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-sup 7909  df-inf 7910  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-n0 10821  df-z 10889  df-uz 11111  df-q 11216  df-ioo 11590
This theorem is referenced by:  uniioombllem2  22482
  Copyright terms: Public domain W3C validator