MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Unicode version

Theorem ioorf 21171
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
ioorf  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)

Proof of Theorem ioorf
Dummy variables  a 
b  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
2 ioof 11490 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5659 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4 ovelrn 6341 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b ) ) )
52, 3, 4mp2b 10 . . 3  |-  ( x  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  x  =  ( a (,) b ) )
6 0le0 10514 . . . . . . . . 9  |-  0  <_  0
7 df-br 4393 . . . . . . . . 9  |-  ( 0  <_  0  <->  <. 0 ,  0 >.  e.  <_  )
86, 7mpbi 208 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  <_
9 0xr 9533 . . . . . . . . 9  |-  0  e.  RR*
10 opelxpi 4971 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  <. 0 ,  0 >.  e.  (
RR*  X.  RR* ) )
119, 9, 10mp2an 672 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  (
RR*  X.  RR* )
12 elin 3639 . . . . . . . 8  |-  ( <.
0 ,  0 >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. 0 ,  0 >.  e. 
<_  /\  <. 0 ,  0
>.  e.  ( RR*  X.  RR* ) ) )
138, 11, 12mpbir2an 911 . . . . . . 7  |-  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) )
1413a1i 11 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  x  =  (/) )  ->  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
15 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =  ( a (,) b ) )
1615supeq1d 7799 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  sup ( ( a (,) b ) ,  RR* ,  `'  <  ) )
17 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  e.  RR* )
18 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
b  e.  RR* )
19 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
2019neneqad 2652 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =/=  (/) )
2115, 20eqnetrrd 2742 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a (,) b
)  =/=  (/) )
22 df-ioo 11407 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
23 idd 24 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <  b ) )
24 xrltle 11229 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <_  b ) )
25 idd 24 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <  w ) )
26 xrltle 11229 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <_  w ) )
2722, 23, 24, 25, 26ixxlb 11425 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  `'  <  )  =  a )
2817, 18, 21, 27syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  `'  <  )  =  a )
2916, 28eqtrd 2492 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  a )
3015supeq1d 7799 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  sup ( ( a (,) b ) ,  RR* ,  <  ) )
3122, 23, 24, 25, 26ixxub 11424 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  <  )  =  b )
3217, 18, 21, 31syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  <  )  =  b )
3330, 32eqtrd 2492 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  b )
3429, 33opeq12d 4167 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  =  <. a ,  b
>. )
35 ioon0 11429 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
( a (,) b
)  =/=  (/)  <->  a  <  b ) )
3635ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( ( a (,) b )  =/=  (/)  <->  a  <  b ) )
3721, 36mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <  b )
38 xrltle 11229 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
a  <  b  ->  a  <_  b ) )
3938ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a  <  b  ->  a  <_  b )
)
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <_  b )
41 df-br 4393 . . . . . . . . 9  |-  ( a  <_  b  <->  <. a ,  b >.  e.  <_  )
4240, 41sylib 196 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  <_  )
43 opelxpi 4971 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  <. a ,  b >.  e.  (
RR*  X.  RR* ) )
4443ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  ( RR*  X.  RR* )
)
4542, 44elind 3640 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4634, 45eqeltrd 2539 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4714, 46ifclda 3921 . . . . 5  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  x  =  (
a (,) b ) )  ->  if (
x  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4847ex 434 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
x  =  ( a (,) b )  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) ) )
4948rexlimivv 2944 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b )  ->  if ( x  =  (/) ,  <. 0 ,  0 >. ,  <. sup ( x ,  RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
505, 49sylbi 195 . 2  |-  ( x  e.  ran  (,)  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
511, 50fmpti 5967 1  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   E.wrex 2796    i^i cin 3427   (/)c0 3737   ifcif 3891   ~Pcpw 3960   <.cop 3983   class class class wbr 4392    |-> cmpt 4450    X. cxp 4938   `'ccnv 4939   ran crn 4941    Fn wfn 5513   -->wf 5514  (class class class)co 6192   supcsup 7793   RRcr 9384   0cc0 9385   RR*cxr 9520    < clt 9521    <_ cle 9522   (,)cioo 11403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-sup 7794  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-n0 10683  df-z 10750  df-uz 10965  df-q 11057  df-ioo 11407
This theorem is referenced by:  ioorcl  21175  uniioombllem2  21181
  Copyright terms: Public domain W3C validator