MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Unicode version

Theorem ioorf 22276
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
ioorf  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)

Proof of Theorem ioorf
Dummy variables  a 
b  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
2 ioof 11678 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5716 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4 ovelrn 6434 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b ) ) )
52, 3, 4mp2b 10 . . 3  |-  ( x  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  x  =  ( a (,) b ) )
6 0le0 10668 . . . . . . . . 9  |-  0  <_  0
7 df-br 4398 . . . . . . . . 9  |-  ( 0  <_  0  <->  <. 0 ,  0 >.  e.  <_  )
86, 7mpbi 210 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  <_
9 0xr 9672 . . . . . . . . 9  |-  0  e.  RR*
10 opelxpi 4857 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  <. 0 ,  0 >.  e.  (
RR*  X.  RR* ) )
119, 9, 10mp2an 672 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  (
RR*  X.  RR* )
12 elin 3628 . . . . . . . 8  |-  ( <.
0 ,  0 >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. 0 ,  0 >.  e. 
<_  /\  <. 0 ,  0
>.  e.  ( RR*  X.  RR* ) ) )
138, 11, 12mpbir2an 923 . . . . . . 7  |-  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) )
1413a1i 11 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  x  =  (/) )  ->  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
15 simplr 756 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =  ( a (,) b ) )
1615supeq1d 7941 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  sup ( ( a (,) b ) ,  RR* ,  `'  <  ) )
17 simplll 762 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  e.  RR* )
18 simpllr 763 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
b  e.  RR* )
19 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
2019neqned 2608 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =/=  (/) )
2115, 20eqnetrrd 2699 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a (,) b
)  =/=  (/) )
22 df-ioo 11588 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
23 idd 25 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <  b ) )
24 xrltle 11410 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <_  b ) )
25 idd 25 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <  w ) )
26 xrltle 11410 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <_  w ) )
2722, 23, 24, 25, 26ixxlb 11606 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  `'  <  )  =  a )
2817, 18, 21, 27syl3anc 1232 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  `'  <  )  =  a )
2916, 28eqtrd 2445 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  a )
3015supeq1d 7941 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  sup ( ( a (,) b ) ,  RR* ,  <  ) )
3122, 23, 24, 25, 26ixxub 11605 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  <  )  =  b )
3217, 18, 21, 31syl3anc 1232 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  <  )  =  b )
3330, 32eqtrd 2445 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  b )
3429, 33opeq12d 4169 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  =  <. a ,  b
>. )
35 ioon0 11610 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
( a (,) b
)  =/=  (/)  <->  a  <  b ) )
3635ad2antrr 726 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( ( a (,) b )  =/=  (/)  <->  a  <  b ) )
3721, 36mpbid 212 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <  b )
38 xrltle 11410 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
a  <  b  ->  a  <_  b ) )
3938ad2antrr 726 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a  <  b  ->  a  <_  b )
)
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <_  b )
41 df-br 4398 . . . . . . . . 9  |-  ( a  <_  b  <->  <. a ,  b >.  e.  <_  )
4240, 41sylib 198 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  <_  )
43 opelxpi 4857 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  <. a ,  b >.  e.  (
RR*  X.  RR* ) )
4443ad2antrr 726 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  ( RR*  X.  RR* )
)
4542, 44elind 3629 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4634, 45eqeltrd 2492 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4714, 46ifclda 3919 . . . . 5  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  x  =  (
a (,) b ) )  ->  if (
x  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4847ex 434 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
x  =  ( a (,) b )  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) ) )
4948rexlimivv 2903 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b )  ->  if ( x  =  (/) ,  <. 0 ,  0 >. ,  <. sup ( x ,  RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
505, 49sylbi 197 . 2  |-  ( x  e.  ran  (,)  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
511, 50fmpti 6034 1  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   E.wrex 2757    i^i cin 3415   (/)c0 3740   ifcif 3887   ~Pcpw 3957   <.cop 3980   class class class wbr 4397    |-> cmpt 4455    X. cxp 4823   `'ccnv 4824   ran crn 4826    Fn wfn 5566   -->wf 5567  (class class class)co 6280   supcsup 7936   RRcr 9523   0cc0 9524   RR*cxr 9659    < clt 9660    <_ cle 9661   (,)cioo 11584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-n0 10839  df-z 10908  df-uz 11130  df-q 11230  df-ioo 11588
This theorem is referenced by:  ioorcl  22280  uniioombllem2  22286
  Copyright terms: Public domain W3C validator