MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorclOLD Structured version   Visualization version   Unicode version

Theorem ioorclOLD 22534
Description: The function  F does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) Obsolete version of ioorcl 22529 as of 13-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ioorfOLD.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
ioorclOLD  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem ioorclOLD
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3652 . . 3  |-  (  <_  i^i  ( RR*  X.  RR* )
)  C_  <_
2 ioorfOLD.1 . . . . . 6  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
32ioorfOLD 22530 . . . . 5  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
43ffvelrni 6021 . . . 4  |-  ( A  e.  ran  (,)  ->  ( F `  A )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
54adantr 467 . . 3  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
61, 5sseldi 3430 . 2  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  <_  )
72ioorvalOLD 22531 . . . . . 6  |-  ( A  e.  ran  (,)  ->  ( F `  A )  =  if ( A  =  (/) ,  <. 0 ,  0 >. ,  <. sup ( A ,  RR* ,  `'  <  ) ,  sup ( A ,  RR* ,  <  )
>. ) )
87adantr 467 . . . . 5  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  =  if ( A  =  (/) , 
<. 0 ,  0
>. ,  <. sup ( A ,  RR* ,  `'  <  ) ,  sup ( A ,  RR* ,  <  )
>. ) )
9 iftrue 3887 . . . . 5  |-  ( A  =  (/)  ->  if ( A  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( A ,  RR* ,  `'  <  ) ,  sup ( A ,  RR* ,  <  ) >.
)  =  <. 0 ,  0 >. )
108, 9sylan9eq 2505 . . . 4  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =  (/) )  ->  ( F `  A )  =  <. 0 ,  0 >. )
11 0re 9643 . . . . 5  |-  0  e.  RR
12 opelxpi 4866 . . . . 5  |-  ( ( 0  e.  RR  /\  0  e.  RR )  -> 
<. 0 ,  0
>.  e.  ( RR  X.  RR ) )
1311, 11, 12mp2an 678 . . . 4  |-  <. 0 ,  0 >.  e.  ( RR  X.  RR )
1410, 13syl6eqel 2537 . . 3  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =  (/) )  ->  ( F `  A )  e.  ( RR  X.  RR ) )
15 ioof 11732 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
16 ffn 5728 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
17 ovelrn 6445 . . . . . 6  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( A  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b ) ) )
1815, 16, 17mp2b 10 . . . . 5  |-  ( A  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  A  =  (
a (,) b ) )
192ioorinv2OLD 22532 . . . . . . . . . 10  |-  ( ( a (,) b )  =/=  (/)  ->  ( F `  ( a (,) b
) )  =  <. a ,  b >. )
2019adantl 468 . . . . . . . . 9  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  =  <. a ,  b >. )
21 ioorcl2 22524 . . . . . . . . . . 11  |-  ( ( ( a (,) b
)  =/=  (/)  /\  ( vol* `  ( a (,) b ) )  e.  RR )  -> 
( a  e.  RR  /\  b  e.  RR ) )
2221ancoms 455 . . . . . . . . . 10  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( a  e.  RR  /\  b  e.  RR ) )
23 opelxpi 4866 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  -> 
<. a ,  b >.  e.  ( RR  X.  RR ) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  ->  <. a ,  b >.  e.  ( RR  X.  RR ) )
2520, 24eqeltrd 2529 . . . . . . . 8  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  e.  ( RR 
X.  RR ) )
26 fveq2 5865 . . . . . . . . . . 11  |-  ( A  =  ( a (,) b )  ->  ( vol* `  A )  =  ( vol* `  ( a (,) b
) ) )
2726eleq1d 2513 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  (
( vol* `  A )  e.  RR  <->  ( vol* `  (
a (,) b ) )  e.  RR ) )
28 neeq1 2686 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  ( A  =/=  (/)  <->  ( a (,) b )  =/=  (/) ) )
2927, 28anbi12d 717 . . . . . . . . 9  |-  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  <->  ( ( vol* `  ( a (,) b ) )  e.  RR  /\  (
a (,) b )  =/=  (/) ) ) )
30 fveq2 5865 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  ( F `  A )  =  ( F `  ( a (,) b
) ) )
3130eleq1d 2513 . . . . . . . . 9  |-  ( A  =  ( a (,) b )  ->  (
( F `  A
)  e.  ( RR 
X.  RR )  <->  ( F `  ( a (,) b
) )  e.  ( RR  X.  RR ) ) )
3229, 31imbi12d 322 . . . . . . . 8  |-  ( A  =  ( a (,) b )  ->  (
( ( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  ->  ( F `
 A )  e.  ( RR  X.  RR ) )  <->  ( (
( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  e.  ( RR 
X.  RR ) ) ) )
3325, 32mpbiri 237 . . . . . . 7  |-  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) )
3433a1i 11 . . . . . 6  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) ) )
3534rexlimivv 2884 . . . . 5  |-  ( E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b )  ->  ( ( ( vol* `  A
)  e.  RR  /\  A  =/=  (/) )  ->  ( F `  A )  e.  ( RR  X.  RR ) ) )
3618, 35sylbi 199 . . . 4  |-  ( A  e.  ran  (,)  ->  ( ( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) )
3736impl 626 . . 3  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) )
3814, 37pm2.61dane 2711 . 2  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  ( RR  X.  RR ) )
396, 38elind 3618 1  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   E.wrex 2738    i^i cin 3403   (/)c0 3731   ifcif 3881   ~Pcpw 3951   <.cop 3974    |-> cmpt 4461    X. cxp 4832   `'ccnv 4833   ran crn 4835    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   supcsup 7954   RRcr 9538   0cc0 9539   RR*cxr 9674    < clt 9675    <_ cle 9676   (,)cioo 11635   vol*covol 22413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-rest 15321  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-cmp 20402  df-ovol 22416  df-vol 22418
This theorem is referenced by:  uniioombllem2OLD  22541
  Copyright terms: Public domain W3C validator