MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopos Structured version   Unicode version

Theorem ioopos 11700
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 9676 . . 3  |-  0  e.  RR*
2 pnfxr 11401 . . 3  |- +oo  e.  RR*
3 iooval2 11658 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) } )
41, 2, 3mp2an 676 . 2  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) }
5 ltpnf 11411 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
65biantrud 509 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( 0  <  x  /\  x  < +oo ) ) )
76rabbiia 3067 . 2  |-  { x  e.  RR  |  0  < 
x }  =  {
x  e.  RR  | 
( 0  <  x  /\  x  < +oo ) }
84, 7eqtr4i 2452 1  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    = wceq 1437    e. wcel 1867   {crab 2777   class class class wbr 4417  (class class class)co 6296   RRcr 9527   0cc0 9528   +oocpnf 9661   RR*cxr 9663    < clt 9664   (,)cioo 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-i2m1 9596  ax-1ne0 9597  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-po 4766  df-so 4767  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-er 7362  df-en 7569  df-dom 7570  df-sdom 7571  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-ioo 11628
This theorem is referenced by:  ioorp  11701  repos  11720
  Copyright terms: Public domain W3C validator