MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem3 Structured version   Unicode version

Theorem ioombl1lem3 21838
Description: Lemma for ioombl1 21840. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b  |-  B  =  ( A (,) +oo )
ioombl1.a  |-  ( ph  ->  A  e.  RR )
ioombl1.e  |-  ( ph  ->  E  C_  RR )
ioombl1.v  |-  ( ph  ->  ( vol* `  E )  e.  RR )
ioombl1.c  |-  ( ph  ->  C  e.  RR+ )
ioombl1.s  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ioombl1.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ioombl1.u  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ioombl1.f1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ioombl1.f2  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
ioombl1.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
ioombl1.p  |-  P  =  ( 1st `  ( F `  n )
)
ioombl1.q  |-  Q  =  ( 2nd `  ( F `  n )
)
ioombl1.g  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
ioombl1.h  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
Assertion
Ref Expression
ioombl1lem3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
Distinct variable groups:    B, n    C, n    n, E    n, F    n, G    n, H    ph, n    S, n
Allowed substitution hints:    A( n)    P( n)    Q( n)    T( n)    U( n)

Proof of Theorem ioombl1lem3
StepHypRef Expression
1 ioombl1.q . . . . 5  |-  Q  =  ( 2nd `  ( F `  n )
)
2 ioombl1.f1 . . . . . . 7  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3 ovolfcl 21746 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
42, 3sylan 471 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
54simp2d 1009 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
61, 5syl5eqel 2559 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  RR )
76recnd 9634 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  CC )
8 ioombl1.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
98adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  RR )
10 ioombl1.p . . . . . . 7  |-  P  =  ( 1st `  ( F `  n )
)
114simp1d 1008 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
1210, 11syl5eqel 2559 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  RR )
13 ifcl 3987 . . . . . 6  |-  ( ( A  e.  RR  /\  P  e.  RR )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
149, 12, 13syl2anc 661 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
15 ifcl 3987 . . . . 5  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR )
1614, 6, 15syl2anc 661 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )
1716recnd 9634 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  CC )
1812recnd 9634 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  CC )
197, 17, 18npncand 9966 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( Q  -  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )  +  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  -  P
) )  =  ( Q  -  P ) )
20 ioombl1.b . . . . . . 7  |-  B  =  ( A (,) +oo )
21 ioombl1.e . . . . . . 7  |-  ( ph  ->  E  C_  RR )
22 ioombl1.v . . . . . . 7  |-  ( ph  ->  ( vol* `  E )  e.  RR )
23 ioombl1.c . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
24 ioombl1.s . . . . . . 7  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
25 ioombl1.t . . . . . . 7  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
26 ioombl1.u . . . . . . 7  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
27 ioombl1.f2 . . . . . . 7  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
28 ioombl1.f3 . . . . . . 7  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
29 ioombl1.g . . . . . . 7  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
30 ioombl1.h . . . . . . 7  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
3120, 8, 21, 22, 23, 24, 25, 26, 2, 27, 28, 10, 1, 29, 30ioombl1lem1 21836 . . . . . 6  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
3231simpld 459 . . . . 5  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
33 eqid 2467 . . . . . 6  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
3433ovolfsval 21750 . . . . 5  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( 2nd `  ( G `  n
) )  -  ( 1st `  ( G `  n ) ) ) )
3532, 34sylan 471 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) ) )
36 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
37 opex 4717 . . . . . . . 8  |-  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V
3829fvmpt2 5964 . . . . . . . 8  |-  ( ( n  e.  NN  /\  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V )  ->  ( G `  n )  =  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
3936, 37, 38sylancl 662 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  = 
<. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
4039fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
41 op2ndg 6808 . . . . . . 7  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  Q )
4216, 6, 41syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  Q )
4340, 42eqtrd 2508 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  Q )
4439fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
45 op1stg 6807 . . . . . . 7  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
4616, 6, 45syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
4744, 46eqtrd 2508 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
4843, 47oveq12d 6313 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( Q  -  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
4935, 48eqtrd 2508 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( Q  -  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
5031simprd 463 . . . . 5  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
51 eqid 2467 . . . . . 6  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
5251ovolfsval 21750 . . . . 5  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  =  ( ( 2nd `  ( H `  n
) )  -  ( 1st `  ( H `  n ) ) ) )
5350, 52sylan 471 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  =  ( ( 2nd `  ( H `  n )
)  -  ( 1st `  ( H `  n
) ) ) )
54 opex 4717 . . . . . . . 8  |-  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  _V
5530fvmpt2 5964 . . . . . . . 8  |-  ( ( n  e.  NN  /\  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >.  e.  _V )  ->  ( H `  n )  =  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )
5636, 54, 55sylancl 662 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  = 
<. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
5756fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
58 op2ndg 6808 . . . . . . 7  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
5912, 16, 58syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
6057, 59eqtrd 2508 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
6156fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
62 op1stg 6807 . . . . . . 7  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  P )
6312, 16, 62syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  P )
6461, 63eqtrd 2508 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  P )
6560, 64oveq12d 6313 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( H `
 n ) )  -  ( 1st `  ( H `  n )
) )  =  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  -  P
) )
6653, 65eqtrd 2508 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  =  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  -  P
) )
6749, 66oveq12d 6313 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) )  =  ( ( Q  -  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )  +  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  -  P
) ) )
68 eqid 2467 . . . . 5  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
6968ovolfsval 21750 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
702, 69sylan 471 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
711, 10oveq12i 6307 . . 3  |-  ( Q  -  P )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )
7270, 71syl6eqr 2526 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( Q  -  P ) )
7319, 67, 723eqtr4d 2518 1  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118    i^i cin 3480    C_ wss 3481   ifcif 3945   <.cop 4039   U.cuni 4251   class class class wbr 4453    |-> cmpt 4511    X. cxp 5003   ran crn 5006    o. ccom 5009   -->wf 5590   ` cfv 5594  (class class class)co 6295   1stc1st 6793   2ndc2nd 6794   supcsup 7912   RRcr 9503   1c1 9505    + caddc 9507   +oocpnf 9637   RR*cxr 9639    < clt 9640    <_ cle 9641    - cmin 9817   NNcn 10548   RR+crp 11232   (,)cioo 11541    seqcseq 12087   abscabs 13047   vol*covol 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049
This theorem is referenced by:  ioombl1lem4  21839
  Copyright terms: Public domain W3C validator