MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioomax Structured version   Unicode version

Theorem ioomax 11484
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax  |-  ( -oo (,) +oo )  =  RR

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 11208 . . 3  |- -oo  e.  RR*
2 pnfxr 11206 . . 3  |- +oo  e.  RR*
3 iooval2 11447 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) } )
41, 2, 3mp2an 672 . 2  |-  ( -oo (,) +oo )  =  {
x  e.  RR  | 
( -oo  <  x  /\  x  < +oo ) }
5 rabid2 3004 . . 3  |-  ( RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }  <->  A. x  e.  RR  ( -oo  <  x  /\  x  < +oo ) )
6 mnflt 11218 . . . 4  |-  ( x  e.  RR  -> -oo  <  x )
7 ltpnf 11216 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
86, 7jca 532 . . 3  |-  ( x  e.  RR  ->  ( -oo  <  x  /\  x  < +oo ) )
95, 8mprgbir 2904 . 2  |-  RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }
104, 9eqtr4i 2486 1  |-  ( -oo (,) +oo )  =  RR
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   {crab 2803   class class class wbr 4403  (class class class)co 6203   RRcr 9395   +oocpnf 9529   -oocmnf 9530   RR*cxr 9531    < clt 9532   (,)cioo 11414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-pre-lttri 9470  ax-pre-lttrn 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-ioo 11418
This theorem is referenced by:  unirnioo  11509  resup  11826  reordt  18957  icopnfcld  20482  iocmnfcld  20483  blssioo  20507  reconnlem1  20538  ioombl1  21179  ioombl  21182  mbfdm  21242  ismbf  21244  ismbf2d  21255  ismbf3d  21268  tpr2rico  26507  xrge0iifcnv  26528  esumfsupre  26685  esumpfinvallem  26688  esumpcvgval  26692  esumcvg  26700  retopscon  27302  asindmre  28647
  Copyright terms: Public domain W3C validator