MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioomax Structured version   Visualization version   Unicode version

Theorem ioomax 11709
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax  |-  ( -oo (,) +oo )  =  RR

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 11414 . . 3  |- -oo  e.  RR*
2 pnfxr 11412 . . 3  |- +oo  e.  RR*
3 iooval2 11669 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) } )
41, 2, 3mp2an 678 . 2  |-  ( -oo (,) +oo )  =  {
x  e.  RR  | 
( -oo  <  x  /\  x  < +oo ) }
5 rabid2 2968 . . 3  |-  ( RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }  <->  A. x  e.  RR  ( -oo  <  x  /\  x  < +oo ) )
6 mnflt 11425 . . . 4  |-  ( x  e.  RR  -> -oo  <  x )
7 ltpnf 11422 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
86, 7jca 535 . . 3  |-  ( x  e.  RR  ->  ( -oo  <  x  /\  x  < +oo ) )
95, 8mprgbir 2752 . 2  |-  RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }
104, 9eqtr4i 2476 1  |-  ( -oo (,) +oo )  =  RR
Colors of variables: wff setvar class
Syntax hints:    /\ wa 371    = wceq 1444    e. wcel 1887   {crab 2741   class class class wbr 4402  (class class class)co 6290   RRcr 9538   +oocpnf 9672   -oocmnf 9673   RR*cxr 9674    < clt 9675   (,)cioo 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-pre-lttri 9613  ax-pre-lttrn 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-ioo 11639
This theorem is referenced by:  unirnioo  11734  resup  12094  reordt  20234  icopnfcld  21788  iocmnfcld  21789  blssioo  21813  reconnlem1  21844  ioombl1  22515  ioombl  22518  mbfdm  22584  ismbf  22586  ismbf2d  22597  ismbf3d  22610  tpr2rico  28718  esumcvgsum  28909  retopscon  29972  asindmre  32027  itgsubsticclem  37852
  Copyright terms: Public domain W3C validator