MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioojoin Structured version   Unicode version

Theorem ioojoin 11536
Description: Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
ioojoin  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )

Proof of Theorem ioojoin
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unass 3624 . 2  |-  ( ( ( A (,) B
)  u.  { B } )  u.  ( B (,) C ) )  =  ( ( A (,) B )  u.  ( { B }  u.  ( B (,) C
) ) )
2 snunioo 11531 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  < 
C )  ->  ( { B }  u.  ( B (,) C ) )  =  ( B [,) C ) )
323expa 1188 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  C  e.  RR* )  /\  B  <  C )  ->  ( { B }  u.  ( B (,) C ) )  =  ( B [,) C
) )
433adantl1 1144 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  B  <  C )  ->  ( { B }  u.  ( B (,) C ) )  =  ( B [,) C ) )
54adantrl 715 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( { B }  u.  ( B (,) C
) )  =  ( B [,) C ) )
65uneq2d 3621 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( A (,) B )  u.  ( { B }  u.  ( B (,) C ) ) )  =  ( ( A (,) B )  u.  ( B [,) C ) ) )
7 df-ioo 11418 . . . 4  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
8 df-ico 11420 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
9 xrlenlt 9556 . . . 4  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B  <_  w  <->  -.  w  <  B ) )
10 xrlttr 11231 . . . 4  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w  <  B  /\  B  <  C )  ->  w  <  C
) )
11 xrltletr 11245 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <  B  /\  B  <_  w )  ->  A  <  w
) )
127, 8, 9, 7, 10, 11ixxun 11430 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( A (,) B )  u.  ( B [,) C ) )  =  ( A (,) C ) )
136, 12eqtrd 2495 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( A (,) B )  u.  ( { B }  u.  ( B (,) C ) ) )  =  ( A (,) C ) )
141, 13syl5eq 2507 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    u. cun 3437   {csn 3988   class class class wbr 4403  (class class class)co 6203   RR*cxr 9531    < clt 9532    <_ cle 9533   (,)cioo 11414   [,)cico 11416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-pre-lttri 9470  ax-pre-lttrn 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-ioo 11418  df-ico 11420  df-icc 11421
This theorem is referenced by:  reconnlem1  20538  itgsplitioo  21451  lhop  21624  iocunico  29754
  Copyright terms: Public domain W3C validator