MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioo0 Structured version   Unicode version

Theorem ioo0 11312
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ioo0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iooval 11311 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
21eqeq1d 2441 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) ) )
3 df-ne 2598 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) )
4 rabn0 3645 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  E. x  e.  RR*  ( A  <  x  /\  x  <  B ) )
53, 4bitr3i 251 . . . . 5  |-  ( -. 
{ x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
6 xrlttr 11104 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
763com23 1186 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
873expa 1180 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  < 
x  /\  x  <  B )  ->  A  <  B ) )
98rexlimdva 2831 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  ->  A  <  B ) )
10 qbtwnxr 11157 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
11 qre 10945 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR )
1211rexrd 9420 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  x  e.  RR* )
1312anim1i 563 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <  x  /\  x  < 
B ) ) )
1413reximi2 2812 . . . . . . . 8  |-  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
1510, 14syl 16 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
16153expia 1182 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) ) )
179, 16impbid 191 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  <->  A  <  B ) )
185, 17syl5bb 257 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  A  <  B ) )
19 xrltnle 9430 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -.  B  <_  A ) )
2018, 19bitrd 253 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  -.  B  <_  A ) )
2120con4bid 293 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
222, 21bitrd 253 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   E.wrex 2706   {crab 2709   (/)c0 3625   class class class wbr 4280  (class class class)co 6080   RR*cxr 9404    < clt 9405    <_ cle 9406   QQcq 10940   (,)cioo 11287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-sup 7679  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-n0 10567  df-z 10634  df-uz 10849  df-q 10941  df-ioo 11291
This theorem is referenced by:  ioon0  11313  iooid  11315  bndth  20371  ioombl  20887  ioovolcl  20891  itgsubstlem  21361
  Copyright terms: Public domain W3C validator