Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocssicc Structured version   Unicode version

Theorem iocssicc 26057
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc  |-  ( A (,] B )  C_  ( A [,] B )

Proof of Theorem iocssicc
Dummy variables  a 
b  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 11303 . 2  |-  (,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <  x  /\  x  <_  b ) } )
2 df-icc 11305 . 2  |-  [,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <_  x  /\  x  <_  b ) } )
3 xrltle 11124 . 2  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A  <_  w ) )
4 idd 24 . 2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <_  B  ->  w  <_  B ) )
51, 2, 3, 4ixxssixx 11312 1  |-  ( A (,] B )  C_  ( A [,] B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    e. wcel 1756    C_ wss 3326   class class class wbr 4290  (class class class)co 6089   RR*cxr 9415    < clt 9416    <_ cle 9417   (,]cioc 11299   [,]cicc 11301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-pre-lttri 9354  ax-pre-lttrn 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-po 4639  df-so 4640  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-ioc 11303  df-icc 11305
This theorem is referenced by:  xrge0iifcnv  26361  xrge0iifcv  26362  xrge0iifhom  26365  pnfneige0  26379  lmxrge0  26380
  Copyright terms: Public domain W3C validator