MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Unicode version

Theorem iocopnst 20637
Description: A half-open interval ending at  B is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
iocopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )

Proof of Theorem iocopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 20470 . . . . 5  |-  ( C (,) ( B  + 
1 ) )  e.  ( topGen `  ran  (,) )
2 simp1 988 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR ) )
4 simp2 989 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v )
54a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v ) )
6 ltp1 10271 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  B  <  ( B  +  1 ) )
76adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  B  <  ( B  +  1 ) )
8 peano2re 9646 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
98adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( B  +  1 )  e.  RR )
10 lelttr 9569 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
11103expa 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  RR  /\  B  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1211ancom1s 803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1312ancomsd 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( B  <  ( B  + 
1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
149, 13mpdan 668 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( ( B  < 
( B  +  1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
157, 14mpand 675 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( v  <_  B  ->  v  <  ( B  +  1 ) ) )
1615impr 619 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  v  <_  B )
)  ->  v  <  ( B  +  1 ) )
17163adantr2 1148 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  v  <  ( B  +  1 ) )
1817ex 434 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  -> 
v  <  ( B  +  1 ) ) )
1918ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
203, 5, 193jcad 1169 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) ) ) )
21 rexr 9533 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  e.  RR* )
22 elico2 11463 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2321, 22sylan2 474 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2423biimpa 484 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
25 lelttr 9569 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <  v
) )
26 ltle 9567 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v )
)
27263adant2 1007 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v ) )
2825, 27syld 44 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <_  v
) )
29283expa 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( A  <_  C  /\  C  <  v )  ->  A  <_  v ) )
3029imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( A  <_  C  /\  C  <  v ) )  ->  A  <_  v )
3130an4s 822 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v ) )  ->  A  <_  v
)
32313adantr3 1149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  A  <_  v )
3332ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3433anasss 647 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C )
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
35343adantr3 1149 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B ) )  ->  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3635adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3724, 36syldan 470 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
38 simp3 990 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B )
3938a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B ) )
403, 37, 393jcad 1169 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
4120, 40jcad 533 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
42 simpl1 991 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
43 simpl2 992 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  C  <  v
)
44 simpr3 996 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <_  B
)
4542, 43, 443jca 1168 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) )
4641, 45impbid1 203 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
4724simp1d 1000 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
48 rexr 9533 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
4947, 48syl 16 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
50 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR )
51 elioc2 11462 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  B  e.  RR )  ->  (
v  e.  ( C (,] B )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
5249, 50, 51syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
53 elin 3640 . . . . . . . 8  |-  ( v  e.  ( ( C (,) ( B  + 
1 ) )  i^i  ( A [,] B
) )  <->  ( v  e.  ( C (,) ( B  +  1 ) )  /\  v  e.  ( A [,] B
) ) )
54 rexr 9533 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  RR  ->  ( B  +  1 )  e.  RR* )
558, 54syl 16 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR* )
5655ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( B  +  1 )  e. 
RR* )
57 elioo2 11445 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  ( B  +  1 )  e.  RR* )  ->  (
v  e.  ( C (,) ( B  + 
1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
5849, 56, 57syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,) ( B  +  1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
59 elicc2 11464 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
6059adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
6158, 60anbi12d 710 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  ( C (,) ( B  + 
1 ) )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6253, 61syl5bb 257 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6346, 52, 623bitr4d 285 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  v  e.  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6463eqrdv 2448 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) )
65 ineq1 3646 . . . . . . 7  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )
6665eqeq2d 2465 . . . . . 6  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
( C (,] B
)  =  ( v  i^i  ( A [,] B ) )  <->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6766rspcev 3172 . . . . 5  |-  ( ( ( C (,) ( B  +  1 ) )  e.  ( topGen ` 
ran  (,) )  /\  ( C (,] B )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
681, 64, 67sylancr 663 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
69 retop 20465 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
70 ovex 6218 . . . . 5  |-  ( A [,] B )  e. 
_V
71 elrest 14477 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( C (,] B
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) ) )
7269, 70, 71mp2an 672 . . . 4  |-  ( ( C (,] B )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
7368, 72sylibr 212 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
74 iccssre 11481 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7574adantr 465 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( A [,] B )  C_  RR )
76 eqid 2451 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
77 iocopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7876, 77resubmet 20504 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7975, 78syl 16 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
8073, 79eleqtrrd 2542 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  J
)
8180ex 434 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2796   _Vcvv 3071    i^i cin 3428    C_ wss 3429   class class class wbr 4393    X. cxp 4939   ran crn 4942    |` cres 4943    o. ccom 4945   ` cfv 5519  (class class class)co 6193   RRcr 9385   1c1 9387    + caddc 9389   RR*cxr 9521    < clt 9522    <_ cle 9523    - cmin 9699   (,)cioo 11404   (,]cioc 11405   [,)cico 11406   [,]cicc 11407   abscabs 12834   ↾t crest 14470   topGenctg 14487   MetOpencmopn 17924   Topctop 18623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-rest 14472  df-topgen 14493  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-top 18628  df-bases 18630  df-topon 18631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator