MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Unicode version

Theorem iocopnst 21566
Description: A half-open interval ending at  B is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
iocopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )

Proof of Theorem iocopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 21399 . . . . 5  |-  ( C (,) ( B  + 
1 ) )  e.  ( topGen `  ran  (,) )
2 simp1 996 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR ) )
4 simp2 997 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v )
54a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v ) )
6 ltp1 10401 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  B  <  ( B  +  1 ) )
76adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  B  <  ( B  +  1 ) )
8 peano2re 9770 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
98adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( B  +  1 )  e.  RR )
10 lelttr 9692 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
11103expa 1196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  RR  /\  B  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1211ancom1s 805 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1312ancomsd 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( B  <  ( B  + 
1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
149, 13mpdan 668 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( ( B  < 
( B  +  1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
157, 14mpand 675 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( v  <_  B  ->  v  <  ( B  +  1 ) ) )
1615impr 619 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  v  <_  B )
)  ->  v  <  ( B  +  1 ) )
17163adantr2 1156 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  v  <  ( B  +  1 ) )
1817ex 434 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  -> 
v  <  ( B  +  1 ) ) )
1918ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
203, 5, 193jcad 1177 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) ) ) )
21 rexr 9656 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  e.  RR* )
22 elico2 11613 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2321, 22sylan2 474 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2423biimpa 484 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
25 lelttr 9692 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <  v
) )
26 ltle 9690 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v )
)
27263adant2 1015 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v ) )
2825, 27syld 44 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <_  v
) )
29283expa 1196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( A  <_  C  /\  C  <  v )  ->  A  <_  v ) )
3029imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( A  <_  C  /\  C  <  v ) )  ->  A  <_  v )
3130an4s 826 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v ) )  ->  A  <_  v
)
32313adantr3 1157 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  A  <_  v )
3332ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3433anasss 647 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C )
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
35343adantr3 1157 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B ) )  ->  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3635adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3724, 36syldan 470 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
38 simp3 998 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B )
3938a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B ) )
403, 37, 393jcad 1177 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
4120, 40jcad 533 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
42 simpl1 999 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
43 simpl2 1000 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  C  <  v
)
44 simpr3 1004 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <_  B
)
4542, 43, 443jca 1176 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) )
4641, 45impbid1 203 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
4724simp1d 1008 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
48 rexr 9656 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
4947, 48syl 16 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
50 simplr 755 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR )
51 elioc2 11612 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  B  e.  RR )  ->  (
v  e.  ( C (,] B )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
5249, 50, 51syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
53 elin 3683 . . . . . . . 8  |-  ( v  e.  ( ( C (,) ( B  + 
1 ) )  i^i  ( A [,] B
) )  <->  ( v  e.  ( C (,) ( B  +  1 ) )  /\  v  e.  ( A [,] B
) ) )
54 rexr 9656 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  RR  ->  ( B  +  1 )  e.  RR* )
558, 54syl 16 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR* )
5655ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( B  +  1 )  e. 
RR* )
57 elioo2 11595 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  ( B  +  1 )  e.  RR* )  ->  (
v  e.  ( C (,) ( B  + 
1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
5849, 56, 57syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,) ( B  +  1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
59 elicc2 11614 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
6059adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
6158, 60anbi12d 710 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  ( C (,) ( B  + 
1 ) )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6253, 61syl5bb 257 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6346, 52, 623bitr4d 285 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  v  e.  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6463eqrdv 2454 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) )
65 ineq1 3689 . . . . . . 7  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )
6665eqeq2d 2471 . . . . . 6  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
( C (,] B
)  =  ( v  i^i  ( A [,] B ) )  <->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6766rspcev 3210 . . . . 5  |-  ( ( ( C (,) ( B  +  1 ) )  e.  ( topGen ` 
ran  (,) )  /\  ( C (,] B )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
681, 64, 67sylancr 663 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
69 retop 21394 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
70 ovex 6324 . . . . 5  |-  ( A [,] B )  e. 
_V
71 elrest 14845 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( C (,] B
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) ) )
7269, 70, 71mp2an 672 . . . 4  |-  ( ( C (,] B )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
7368, 72sylibr 212 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
74 iccssre 11631 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7574adantr 465 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( A [,] B )  C_  RR )
76 eqid 2457 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
77 iocopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7876, 77resubmet 21433 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7975, 78syl 16 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
8073, 79eleqtrrd 2548 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  J
)
8180ex 434 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   class class class wbr 4456    X. cxp 5006   ran crn 5009    |` cres 5010    o. ccom 5012   ` cfv 5594  (class class class)co 6296   RRcr 9508   1c1 9510    + caddc 9512   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824   (,)cioo 11554   (,]cioc 11555   [,)cico 11556   [,]cicc 11557   abscabs 13079   ↾t crest 14838   topGenctg 14855   MetOpencmopn 18535   Topctop 19521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-rest 14840  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator