MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Structured version   Unicode version

Theorem inxp 4970
Description: The intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )

Proof of Theorem inxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 4968 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }
2 an4 820 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
3 elin 3537 . . . . . 6  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3537 . . . . . 6  |-  ( y  e.  ( B  i^i  D )  <->  ( y  e.  B  /\  y  e.  D ) )
53, 4anbi12i 697 . . . . 5  |-  ( ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
62, 5bitr4i 252 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) )
76opabbii 4354 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
81, 7eqtri 2461 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
9 df-xp 4844 . . 3  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
10 df-xp 4844 . . 3  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
119, 10ineq12i 3548 . 2  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )
12 df-xp 4844 . 2  |-  ( ( A  i^i  C )  X.  ( B  i^i  D ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) }
138, 11, 123eqtr4i 2471 1  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756    i^i cin 3325   {copab 4347    X. cxp 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-opab 4349  df-xp 4844  df-rel 4845
This theorem is referenced by:  xpindi  4971  xpindir  4972  dmxpin  5058  xpssres  5142  xpdisj1  5257  xpdisj2  5258  imainrect  5277  xpima  5278  curry1  6662  curry2  6665  fpar  6674  marypha1lem  7681  fpwwe2lem13  8807  hashxplem  12193  sscres  14734  gsumxp  16466  gsumxpOLD  16468  pjfval  18129  pjpm  18131  txbas  19138  txcls  19175  txrest  19202  trust  19802  ressuss  19836  trcfilu  19867  metreslem  19935  ressxms  20098  ressms  20099  mbfmcst  26672  0rrv  26832
  Copyright terms: Public domain W3C validator