MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfval Structured version   Unicode version

Theorem invfval 15010
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
invfval.s  |-  S  =  (Sect `  C )
Assertion
Ref Expression
invfval  |-  ( ph  ->  ( X N Y )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )

Proof of Theorem invfval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . 3  |-  B  =  ( Base `  C
)
2 invfval.n . . 3  |-  N  =  (Inv `  C )
3 invfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . 3  |-  ( ph  ->  X  e.  B )
5 invfval.s . . 3  |-  S  =  (Sect `  C )
61, 2, 3, 4, 4, 5invffval 15009 . 2  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
7 simprl 755 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
8 simprr 756 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
97, 8oveq12d 6300 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x S y )  =  ( X S Y ) )
108, 7oveq12d 6300 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( y S x )  =  ( Y S X ) )
1110cnveqd 5176 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  `' ( y S x )  =  `' ( Y S X ) )
129, 11ineq12d 3701 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( x S y )  i^i  `' ( y S x ) )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )
13 invfval.y . 2  |-  ( ph  ->  Y  e.  B )
14 ovex 6307 . . . 4  |-  ( X S Y )  e. 
_V
1514inex1 4588 . . 3  |-  ( ( X S Y )  i^i  `' ( Y S X ) )  e.  _V
1615a1i 11 . 2  |-  ( ph  ->  ( ( X S Y )  i^i  `' ( Y S X ) )  e.  _V )
176, 12, 4, 13, 16ovmpt2d 6412 1  |-  ( ph  ->  ( X N Y )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475   `'ccnv 4998   ` cfv 5586  (class class class)co 6282   Basecbs 14486   Catccat 14915  Sectcsect 14996  Invcinv 14997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-inv 15000
This theorem is referenced by:  isinv  15011  invss  15012  oppcinv  15027
  Copyright terms: Public domain W3C validator