MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfval Structured version   Visualization version   Unicode version

Theorem invfval 15664
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
invfval.s  |-  S  =  (Sect `  C )
Assertion
Ref Expression
invfval  |-  ( ph  ->  ( X N Y )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )

Proof of Theorem invfval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . 3  |-  B  =  ( Base `  C
)
2 invfval.n . . 3  |-  N  =  (Inv `  C )
3 invfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . 3  |-  ( ph  ->  X  e.  B )
5 invfval.s . . 3  |-  S  =  (Sect `  C )
61, 2, 3, 4, 4, 5invffval 15663 . 2  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
7 simprl 764 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
8 simprr 766 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
97, 8oveq12d 6308 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x S y )  =  ( X S Y ) )
108, 7oveq12d 6308 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( y S x )  =  ( Y S X ) )
1110cnveqd 5010 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  `' ( y S x )  =  `' ( Y S X ) )
129, 11ineq12d 3635 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( x S y )  i^i  `' ( y S x ) )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )
13 invfval.y . 2  |-  ( ph  ->  Y  e.  B )
14 ovex 6318 . . . 4  |-  ( X S Y )  e. 
_V
1514inex1 4544 . . 3  |-  ( ( X S Y )  i^i  `' ( Y S X ) )  e.  _V
1615a1i 11 . 2  |-  ( ph  ->  ( ( X S Y )  i^i  `' ( Y S X ) )  e.  _V )
176, 12, 4, 13, 16ovmpt2d 6424 1  |-  ( ph  ->  ( X N Y )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   _Vcvv 3045    i^i cin 3403   `'ccnv 4833   ` cfv 5582  (class class class)co 6290   Basecbs 15121   Catccat 15570  Sectcsect 15649  Invcinv 15650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-inv 15653
This theorem is referenced by:  isinv  15665  invss  15666  dfiso2  15677  oppcinv  15685
  Copyright terms: Public domain W3C validator