MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfun Structured version   Unicode version

Theorem invfun 15662
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
invfun  |-  ( ph  ->  Fun  ( X N Y ) )

Proof of Theorem invfun
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . 4  |-  B  =  ( Base `  C
)
2 invfval.n . . . 4  |-  N  =  (Inv `  C )
3 invfval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . . 4  |-  ( ph  ->  X  e.  B )
5 invfval.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 eqid 2423 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
71, 2, 3, 4, 5, 6invss 15659 . . 3  |-  ( ph  ->  ( X N Y )  C_  ( ( X ( Hom  `  C
) Y )  X.  ( Y ( Hom  `  C ) X ) ) )
8 relxp 4959 . . 3  |-  Rel  (
( X ( Hom  `  C ) Y )  X.  ( Y ( Hom  `  C ) X ) )
9 relss 4939 . . 3  |-  ( ( X N Y ) 
C_  ( ( X ( Hom  `  C
) Y )  X.  ( Y ( Hom  `  C ) X ) )  ->  ( Rel  ( ( X ( Hom  `  C ) Y )  X.  ( Y ( Hom  `  C
) X ) )  ->  Rel  ( X N Y ) ) )
107, 8, 9mpisyl 22 . 2  |-  ( ph  ->  Rel  ( X N Y ) )
11 eqid 2423 . . . . . 6  |-  (Sect `  C )  =  (Sect `  C )
123adantr 467 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  C  e.  Cat )
135adantr 467 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  Y  e.  B
)
144adantr 467 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  X  e.  B
)
151, 2, 3, 4, 5, 11isinv 15658 . . . . . . . 8  |-  ( ph  ->  ( f ( X N Y ) g  <-> 
( f ( X (Sect `  C ) Y ) g  /\  g ( Y (Sect `  C ) X ) f ) ) )
1615simplbda 629 . . . . . . 7  |-  ( (
ph  /\  f ( X N Y ) g )  ->  g ( Y (Sect `  C ) X ) f )
1716adantrr 722 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  g ( Y (Sect `  C ) X ) f )
181, 2, 3, 4, 5, 11isinv 15658 . . . . . . . 8  |-  ( ph  ->  ( f ( X N Y ) h  <-> 
( f ( X (Sect `  C ) Y ) h  /\  h ( Y (Sect `  C ) X ) f ) ) )
1918simprbda 628 . . . . . . 7  |-  ( (
ph  /\  f ( X N Y ) h )  ->  f ( X (Sect `  C ) Y ) h )
2019adantrl 721 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  f ( X (Sect `  C ) Y ) h )
211, 11, 12, 13, 14, 17, 20sectcan 15653 . . . . 5  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  g  =  h )
2221ex 436 . . . 4  |-  ( ph  ->  ( ( f ( X N Y ) g  /\  f ( X N Y ) h )  ->  g  =  h ) )
2322alrimiv 1764 . . 3  |-  ( ph  ->  A. h ( ( f ( X N Y ) g  /\  f ( X N Y ) h )  ->  g  =  h ) )
2423alrimivv 1765 . 2  |-  ( ph  ->  A. f A. g A. h ( ( f ( X N Y ) g  /\  f
( X N Y ) h )  -> 
g  =  h ) )
25 dffun2 5609 . 2  |-  ( Fun  ( X N Y )  <->  ( Rel  ( X N Y )  /\  A. f A. g A. h ( ( f ( X N Y ) g  /\  f
( X N Y ) h )  -> 
g  =  h ) ) )
2610, 24, 25sylanbrc 669 1  |-  ( ph  ->  Fun  ( X N Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371   A.wal 1436    = wceq 1438    e. wcel 1869    C_ wss 3437   class class class wbr 4421    X. cxp 4849   Rel wrel 4856   Fun wfun 5593   ` cfv 5599  (class class class)co 6303   Basecbs 15114   Hom chom 15194   Catccat 15563  Sectcsect 15642  Invcinv 15643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-1st 6805  df-2nd 6806  df-cat 15567  df-cid 15568  df-sect 15645  df-inv 15646
This theorem is referenced by:  inviso1  15664  invf  15666  invco  15669  idinv  15687  funciso  15772  ffthiso  15827  fuciso  15873  setciso  15979  catciso  15995  rngciso  39326  rngcisoALTV  39338  ringciso  39377  ringcisoALTV  39401
  Copyright terms: Public domain W3C validator