MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   Unicode version

Theorem invfuc 15891
Description: If  V
( x ) is an inverse to  U ( x ) for each  x, and  U is a natural transformation, then  V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q  |-  Q  =  ( C FuncCat  D )
fuciso.b  |-  B  =  ( Base `  C
)
fuciso.n  |-  N  =  ( C Nat  D )
fuciso.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
fuciso.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
fucinv.i  |-  I  =  (Inv `  Q )
fucinv.j  |-  J  =  (Inv `  D )
invfuc.u  |-  ( ph  ->  U  e.  ( F N G ) )
invfuc.v  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
Assertion
Ref Expression
invfuc  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Distinct variable groups:    x, B    x, C    x, D    x, I    x, F    x, G    x, J    x, N    ph, x    x, Q    x, U
Allowed substitution hint:    X( x)

Proof of Theorem invfuc
Dummy variables  y 
f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2  |-  ( ph  ->  U  e.  ( F N G ) )
2 invfuc.v . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
3 eqid 2453 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
4 fucinv.j . . . . . . . . . 10  |-  J  =  (Inv `  D )
5 fuciso.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
6 funcrcl 15780 . . . . . . . . . . . . 13  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
75, 6syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
87simprd 465 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  Cat )
98adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  Cat )
10 fuciso.b . . . . . . . . . . . 12  |-  B  =  ( Base `  C
)
11 relfunc 15779 . . . . . . . . . . . . 13  |-  Rel  ( C  Func  D )
12 1st2ndbr 6847 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1311, 5, 12sylancr 670 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1410, 3, 13funcf1 15783 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  D ) )
1514ffvelrnda 6027 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  F
) `  x )  e.  ( Base `  D
) )
16 fuciso.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
17 1st2ndbr 6847 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
1811, 16, 17sylancr 670 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
1910, 3, 18funcf1 15783 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  G
) : B --> ( Base `  D ) )
2019ffvelrnda 6027 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  G
) `  x )  e.  ( Base `  D
) )
21 eqid 2453 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
223, 4, 9, 15, 20, 21invss 15678 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  C_  (
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  X.  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
2322ssbrd 4447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) X  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X ) )
242, 23mpd 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X )
25 brxp 4868 . . . . . . . 8  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  <->  ( ( U `  x )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  /\  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) ) )
2625simprbi 466 . . . . . . 7  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  ->  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2724, 26syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) )
2827ralrimiva 2804 . . . . 5  |-  ( ph  ->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
29 fvex 5880 . . . . . . 7  |-  ( Base `  C )  e.  _V
3010, 29eqeltri 2527 . . . . . 6  |-  B  e. 
_V
31 mptelixpg 7564 . . . . . 6  |-  ( B  e.  _V  ->  (
( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
3230, 31ax-mp 5 . . . . 5  |-  ( ( x  e.  B  |->  X )  e.  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
3328, 32sylibr 216 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
34 fveq2 5870 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  y
) )
35 fveq2 5870 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  y
) )
3634, 35oveq12d 6313 . . . . 5  |-  ( x  =  y  ->  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
3736cbvixpv 7545 . . . 4  |-  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  X_ y  e.  B  ( (
( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)
3833, 37syl6eleq 2541 . . 3  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ y  e.  B  (
( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
39 simpr2 1016 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  z  e.  B )
40 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
41 eqid 2453 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  B  |->  X )  =  ( x  e.  B  |->  X )
4241fvmpt2 5962 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  /\  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
4340, 27, 42syl2anc 667 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
442, 43breqtrrd 4432 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4544ralrimiva 2804 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4645adantr 467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) ) ( ( x  e.  B  |->  X ) `  x ) )
47 nfcv 2594 . . . . . . . . . . . . . . . 16  |-  F/_ x
( U `  z
)
48 nfcv 2594 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) )
49 nffvmpt1 5878 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  B  |->  X ) `  z )
5047, 48, 49nfbr 4450 . . . . . . . . . . . . . . 15  |-  F/ x
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )
51 fveq2 5870 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( U `  x )  =  ( U `  z ) )
52 fveq2 5870 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  z
) )
53 fveq2 5870 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  z
) )
5452, 53oveq12d 6313 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) )
55 fveq2 5870 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  z ) )
5651, 54, 55breq123d 4419 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  z ) ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5750, 56rspc 3146 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5839, 46, 57sylc 62 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) )
598adantr 467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  D  e.  Cat )
6014adantr 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) : B --> ( Base `  D
) )
6160, 39ffvelrnd 6028 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  z )  e.  ( Base `  D
) )
6219adantr 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) : B --> ( Base `  D
) )
6362, 39ffvelrnd 6028 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  z )  e.  ( Base `  D
) )
64 eqid 2453 . . . . . . . . . . . . . 14  |-  (Sect `  D )  =  (Sect `  D )
653, 4, 59, 61, 63, 64isinv 15677 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )  <->  ( ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z )  /\  ( ( x  e.  B  |->  X ) `
 z ) ( ( ( 1st `  G
) `  z )
(Sect `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) ) )
6658, 65mpbid 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  /\  (
( x  e.  B  |->  X ) `  z
) ( ( ( 1st `  G ) `
 z ) (Sect `  D ) ( ( 1st `  F ) `
 z ) ) ( U `  z
) ) )
6766simpld 461 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) )
68 eqid 2453 . . . . . . . . . . . 12  |-  (comp `  D )  =  (comp `  D )
69 eqid 2453 . . . . . . . . . . . 12  |-  ( Id
`  D )  =  ( Id `  D
)
703, 21, 68, 69, 64, 59, 61, 63issect 15670 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  <->  ( ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) )  /\  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) ) )
7167, 70mpbid 214 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
)  e.  ( ( ( 1st `  F
) `  z )
( Hom  `  D ) ( ( 1st `  G
) `  z )
)  /\  ( (
x  e.  B  |->  X ) `  z )  e.  ( ( ( 1st `  G ) `
 z ) ( Hom  `  D )
( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) )
7271simp3d 1023 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) )
7372oveq1d 6310 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
74 simpr1 1015 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  y  e.  B )
7560, 74ffvelrnd 6028 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  y )  e.  ( Base `  D
) )
76 eqid 2453 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
7713adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
7810, 76, 21, 77, 74, 39funcf2 15785 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  F
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
79 simpr3 1017 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  f  e.  ( y ( Hom  `  C ) z ) )
8078, 79ffvelrnd 6028 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
813, 21, 69, 59, 75, 68, 61, 80catlid 15601 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( Id `  D ) `  (
( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( y ( 2nd `  F ) z ) `  f
) )
8273, 81eqtr2d 2488 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  z
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
83 fuciso.n . . . . . . . . 9  |-  N  =  ( C Nat  D )
841adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( F N G ) )
8583, 84nat1st2nd 15868 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
8683, 85, 10, 21, 39natcl 15870 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
8771simp2d 1022 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
) )
883, 21, 68, 59, 75, 61, 63, 80, 86, 61, 87catass 15604 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) ) )
8983, 85, 10, 76, 68, 74, 39, 79nati 15872 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) )
9089oveq2d 6311 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9182, 88, 903eqtrd 2491 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9291oveq1d 6310 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  F ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
9362, 74ffvelrnd 6028 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  y )  e.  ( Base `  D
) )
94 nfcv 2594 . . . . . . . . . . . . 13  |-  F/_ x
( U `  y
)
95 nfcv 2594 . . . . . . . . . . . . 13  |-  F/_ x
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) )
96 nffvmpt1 5878 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  B  |->  X ) `  y )
9794, 95, 96nfbr 4450 . . . . . . . . . . . 12  |-  F/ x
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )
98 fveq2 5870 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( U `  x )  =  ( U `  y ) )
9935, 34oveq12d 6313 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) )
100 fveq2 5870 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  y ) )
10198, 99, 100breq123d 4419 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10297, 101rspc 3146 . . . . . . . . . . 11  |-  ( y  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10374, 46, 102sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
1043, 4, 59, 75, 93, 64isinv 15677 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )  <->  ( ( U `  y )
( ( ( 1st `  F ) `  y
) (Sect `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y )  /\  ( ( x  e.  B  |->  X ) `
 y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y ) ) ) )
105103, 104mpbid 214 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) (Sect `  D ) ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y )  /\  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) ) )
106105simprd 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) )
1073, 21, 68, 69, 64, 59, 93, 75issect 15670 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y )  <->  ( (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) ) )
108106, 107mpbid 214 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y )  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) )
109108simp1d 1021 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
110108simp2d 1022 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
11118adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
11210, 76, 21, 111, 74, 39funcf2 15785 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  G
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
113112, 79ffvelrnd 6028 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  G ) z ) `
 f )  e.  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
1143, 21, 68, 59, 75, 93, 63, 110, 113catcocl 15603 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) )  e.  ( ( ( 1st `  F ) `
 y ) ( Hom  `  D )
( ( 1st `  G
) `  z )
) )
1153, 21, 68, 59, 93, 75, 63, 109, 114, 61, 87catass 15604 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
11683, 85, 10, 21, 74natcl 15870 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
1173, 21, 68, 59, 93, 75, 93, 109, 116, 63, 113catass 15604 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
118108simp3d 1023 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )
119118oveq2d 6311 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) ) )
1203, 21, 69, 59, 93, 68, 63, 113catrid 15602 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )  =  ( ( y ( 2nd `  G ) z ) `  f
) )
121117, 119, 1203eqtrd 2491 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( y ( 2nd `  G
) z ) `  f ) )
122121oveq2d 6311 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) ) )
12392, 115, 1223eqtrrd 2492 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
124123ralrimivvva 2812 . . 3  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  A. f  e.  (
y ( Hom  `  C
) z ) ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
12583, 10, 76, 21, 68, 16, 5isnat2 15865 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  X )  e.  ( G N F )  <->  ( ( x  e.  B  |->  X )  e.  X_ y  e.  B  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( y
( Hom  `  C ) z ) ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) ) ) )
12638, 124, 125mpbir2and 934 . 2  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  ( G N F ) )
127 nfv 1763 . . . 4  |-  F/ y ( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )
128127, 97, 101cbvral 3017 . . 3  |-  ( A. x  e.  B  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  <->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )
12945, 128sylib 200 . 2  |-  ( ph  ->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
130 fuciso.q . . 3  |-  Q  =  ( C FuncCat  D )
131 fucinv.i . . 3  |-  I  =  (Inv `  Q )
132130, 10, 83, 5, 16, 131, 4fucinv 15890 . 2  |-  ( ph  ->  ( U ( F I G ) ( x  e.  B  |->  X )  <->  ( U  e.  ( F N G )  /\  ( x  e.  B  |->  X )  e.  ( G N F )  /\  A. y  e.  B  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) ) )
1331, 126, 129, 132mpbir3and 1192 1  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   A.wral 2739   _Vcvv 3047   <.cop 3976   class class class wbr 4405    |-> cmpt 4464    X. cxp 4835   Rel wrel 4842   -->wf 5581   ` cfv 5585  (class class class)co 6295   1stc1st 6796   2ndc2nd 6797   X_cixp 7527   Basecbs 15133   Hom chom 15213  compcco 15214   Catccat 15582   Idccid 15583  Sectcsect 15661  Invcinv 15662    Func cfunc 15771   Nat cnat 15858   FuncCat cfuc 15859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-fz 11792  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-hom 15226  df-cco 15227  df-cat 15586  df-cid 15587  df-sect 15664  df-inv 15665  df-func 15775  df-nat 15860  df-fuc 15861
This theorem is referenced by:  fuciso  15892  yonedainv  16178
  Copyright terms: Public domain W3C validator