MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Unicode version

Theorem invfuc 15190
Description: If  V
( x ) is an inverse to  U ( x ) for each  x, and  U is a natural transformation, then  V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q  |-  Q  =  ( C FuncCat  D )
fuciso.b  |-  B  =  ( Base `  C
)
fuciso.n  |-  N  =  ( C Nat  D )
fuciso.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
fuciso.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
fucinv.i  |-  I  =  (Inv `  Q )
fucinv.j  |-  J  =  (Inv `  D )
invfuc.u  |-  ( ph  ->  U  e.  ( F N G ) )
invfuc.v  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
Assertion
Ref Expression
invfuc  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Distinct variable groups:    x, B    x, C    x, D    x, I    x, F    x, G    x, J    x, N    ph, x    x, Q    x, U
Allowed substitution hint:    X( x)

Proof of Theorem invfuc
Dummy variables  y 
f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2  |-  ( ph  ->  U  e.  ( F N G ) )
2 invfuc.v . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
3 eqid 2460 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
4 fucinv.j . . . . . . . . . 10  |-  J  =  (Inv `  D )
5 fuciso.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
6 funcrcl 15079 . . . . . . . . . . . . 13  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
87simprd 463 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  Cat )
98adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  Cat )
10 fuciso.b . . . . . . . . . . . 12  |-  B  =  ( Base `  C
)
11 relfunc 15078 . . . . . . . . . . . . 13  |-  Rel  ( C  Func  D )
12 1st2ndbr 6823 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1311, 5, 12sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1410, 3, 13funcf1 15082 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  D ) )
1514ffvelrnda 6012 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  F
) `  x )  e.  ( Base `  D
) )
16 fuciso.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
17 1st2ndbr 6823 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
1811, 16, 17sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
1910, 3, 18funcf1 15082 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  G
) : B --> ( Base `  D ) )
2019ffvelrnda 6012 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  G
) `  x )  e.  ( Base `  D
) )
21 eqid 2460 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
223, 4, 9, 15, 20, 21invss 15005 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  C_  (
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  X.  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
2322ssbrd 4481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) X  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X ) )
242, 23mpd 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X )
25 brxp 5022 . . . . . . . 8  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  <->  ( ( U `  x )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  /\  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) ) )
2625simprbi 464 . . . . . . 7  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  ->  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2724, 26syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) )
2827ralrimiva 2871 . . . . 5  |-  ( ph  ->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
29 fvex 5867 . . . . . . 7  |-  ( Base `  C )  e.  _V
3010, 29eqeltri 2544 . . . . . 6  |-  B  e. 
_V
31 mptelixpg 7496 . . . . . 6  |-  ( B  e.  _V  ->  (
( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
3230, 31ax-mp 5 . . . . 5  |-  ( ( x  e.  B  |->  X )  e.  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
3328, 32sylibr 212 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
34 fveq2 5857 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  y
) )
35 fveq2 5857 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  y
) )
3634, 35oveq12d 6293 . . . . 5  |-  ( x  =  y  ->  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
3736cbvixpv 7477 . . . 4  |-  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  X_ y  e.  B  ( (
( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)
3833, 37syl6eleq 2558 . . 3  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ y  e.  B  (
( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
39 simpr2 998 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  z  e.  B )
40 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
41 eqid 2460 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  B  |->  X )  =  ( x  e.  B  |->  X )
4241fvmpt2 5948 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  /\  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
4340, 27, 42syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
442, 43breqtrrd 4466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4544ralrimiva 2871 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4645adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) ) ( ( x  e.  B  |->  X ) `  x ) )
47 nfcv 2622 . . . . . . . . . . . . . . . 16  |-  F/_ x
( U `  z
)
48 nfcv 2622 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) )
49 nffvmpt1 5865 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  B  |->  X ) `  z )
5047, 48, 49nfbr 4484 . . . . . . . . . . . . . . 15  |-  F/ x
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )
51 fveq2 5857 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( U `  x )  =  ( U `  z ) )
52 fveq2 5857 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  z
) )
53 fveq2 5857 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  z
) )
5452, 53oveq12d 6293 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) )
55 fveq2 5857 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  z ) )
5651, 54, 55breq123d 4454 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  z ) ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5750, 56rspc 3201 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5839, 46, 57sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) )
598adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  D  e.  Cat )
6014adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) : B --> ( Base `  D
) )
6160, 39ffvelrnd 6013 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  z )  e.  ( Base `  D
) )
6219adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) : B --> ( Base `  D
) )
6362, 39ffvelrnd 6013 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  z )  e.  ( Base `  D
) )
64 eqid 2460 . . . . . . . . . . . . . 14  |-  (Sect `  D )  =  (Sect `  D )
653, 4, 59, 61, 63, 64isinv 15004 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )  <->  ( ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z )  /\  ( ( x  e.  B  |->  X ) `
 z ) ( ( ( 1st `  G
) `  z )
(Sect `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) ) )
6658, 65mpbid 210 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  /\  (
( x  e.  B  |->  X ) `  z
) ( ( ( 1st `  G ) `
 z ) (Sect `  D ) ( ( 1st `  F ) `
 z ) ) ( U `  z
) ) )
6766simpld 459 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) )
68 eqid 2460 . . . . . . . . . . . 12  |-  (comp `  D )  =  (comp `  D )
69 eqid 2460 . . . . . . . . . . . 12  |-  ( Id
`  D )  =  ( Id `  D
)
703, 21, 68, 69, 64, 59, 61, 63issect 14998 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  <->  ( ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) )  /\  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) ) )
7167, 70mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
)  e.  ( ( ( 1st `  F
) `  z )
( Hom  `  D ) ( ( 1st `  G
) `  z )
)  /\  ( (
x  e.  B  |->  X ) `  z )  e.  ( ( ( 1st `  G ) `
 z ) ( Hom  `  D )
( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) )
7271simp3d 1005 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) )
7372oveq1d 6290 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
74 simpr1 997 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  y  e.  B )
7560, 74ffvelrnd 6013 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  y )  e.  ( Base `  D
) )
76 eqid 2460 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
7713adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
7810, 76, 21, 77, 74, 39funcf2 15084 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  F
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
79 simpr3 999 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  f  e.  ( y ( Hom  `  C ) z ) )
8078, 79ffvelrnd 6013 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
813, 21, 69, 59, 75, 68, 61, 80catlid 14927 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( Id `  D ) `  (
( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( y ( 2nd `  F ) z ) `  f
) )
8273, 81eqtr2d 2502 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  z
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
83 fuciso.n . . . . . . . . 9  |-  N  =  ( C Nat  D )
841adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( F N G ) )
8583, 84nat1st2nd 15167 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
8683, 85, 10, 21, 39natcl 15169 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
8771simp2d 1004 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
) )
883, 21, 68, 59, 75, 61, 63, 80, 86, 61, 87catass 14930 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) ) )
8983, 85, 10, 76, 68, 74, 39, 79nati 15171 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) )
9089oveq2d 6291 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9182, 88, 903eqtrd 2505 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9291oveq1d 6290 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  F ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
9362, 74ffvelrnd 6013 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  y )  e.  ( Base `  D
) )
94 nfcv 2622 . . . . . . . . . . . . 13  |-  F/_ x
( U `  y
)
95 nfcv 2622 . . . . . . . . . . . . 13  |-  F/_ x
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) )
96 nffvmpt1 5865 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  B  |->  X ) `  y )
9794, 95, 96nfbr 4484 . . . . . . . . . . . 12  |-  F/ x
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )
98 fveq2 5857 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( U `  x )  =  ( U `  y ) )
9935, 34oveq12d 6293 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) )
100 fveq2 5857 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  y ) )
10198, 99, 100breq123d 4454 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10297, 101rspc 3201 . . . . . . . . . . 11  |-  ( y  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10374, 46, 102sylc 60 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
1043, 4, 59, 75, 93, 64isinv 15004 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )  <->  ( ( U `  y )
( ( ( 1st `  F ) `  y
) (Sect `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y )  /\  ( ( x  e.  B  |->  X ) `
 y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y ) ) ) )
105103, 104mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) (Sect `  D ) ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y )  /\  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) ) )
106105simprd 463 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) )
1073, 21, 68, 69, 64, 59, 93, 75issect 14998 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y )  <->  ( (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) ) )
108106, 107mpbid 210 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y )  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) )
109108simp1d 1003 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
110108simp2d 1004 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
11118adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
11210, 76, 21, 111, 74, 39funcf2 15084 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  G
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
113112, 79ffvelrnd 6013 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  G ) z ) `
 f )  e.  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
1143, 21, 68, 59, 75, 93, 63, 110, 113catcocl 14929 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) )  e.  ( ( ( 1st `  F ) `
 y ) ( Hom  `  D )
( ( 1st `  G
) `  z )
) )
1153, 21, 68, 59, 93, 75, 63, 109, 114, 61, 87catass 14930 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
11683, 85, 10, 21, 74natcl 15169 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
1173, 21, 68, 59, 93, 75, 93, 109, 116, 63, 113catass 14930 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
118108simp3d 1005 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )
119118oveq2d 6291 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) ) )
1203, 21, 69, 59, 93, 68, 63, 113catrid 14928 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )  =  ( ( y ( 2nd `  G ) z ) `  f
) )
121117, 119, 1203eqtrd 2505 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( y ( 2nd `  G
) z ) `  f ) )
122121oveq2d 6291 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) ) )
12392, 115, 1223eqtrrd 2506 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
124123ralrimivvva 2879 . . 3  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  A. f  e.  (
y ( Hom  `  C
) z ) ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
12583, 10, 76, 21, 68, 16, 5isnat2 15164 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  X )  e.  ( G N F )  <->  ( ( x  e.  B  |->  X )  e.  X_ y  e.  B  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( y
( Hom  `  C ) z ) ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) ) ) )
12638, 124, 125mpbir2and 915 . 2  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  ( G N F ) )
127 nfv 1678 . . . 4  |-  F/ y ( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )
128127, 97, 101cbvral 3077 . . 3  |-  ( A. x  e.  B  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  <->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )
12945, 128sylib 196 . 2  |-  ( ph  ->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
130 fuciso.q . . 3  |-  Q  =  ( C FuncCat  D )
131 fucinv.i . . 3  |-  I  =  (Inv `  Q )
132130, 10, 83, 5, 16, 131, 4fucinv 15189 . 2  |-  ( ph  ->  ( U ( F I G ) ( x  e.  B  |->  X )  <->  ( U  e.  ( F N G )  /\  ( x  e.  B  |->  X )  e.  ( G N F )  /\  A. y  e.  B  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) ) )
1331, 126, 129, 132mpbir3and 1174 1  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106   <.cop 4026   class class class wbr 4440    |-> cmpt 4498    X. cxp 4990   Rel wrel 4997   -->wf 5575   ` cfv 5579  (class class class)co 6275   1stc1st 6772   2ndc2nd 6773   X_cixp 7459   Basecbs 14479   Hom chom 14555  compcco 14556   Catccat 14908   Idccid 14909  Sectcsect 14989  Invcinv 14990    Func cfunc 15070   Nat cnat 15157   FuncCat cfuc 15158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-hom 14568  df-cco 14569  df-cat 14912  df-cid 14913  df-sect 14992  df-inv 14993  df-func 15074  df-nat 15159  df-fuc 15160
This theorem is referenced by:  fuciso  15191  yonedainv  15397
  Copyright terms: Public domain W3C validator