MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Unicode version

Theorem invffval 15030
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
invfval.s  |-  S  =  (Sect `  C )
Assertion
Ref Expression
invffval  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
Distinct variable groups:    x, y, B    ph, x, y    x, X, y    x, Y, y   
x, C, y    x, S, y
Allowed substitution hints:    N( x, y)

Proof of Theorem invffval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2  |-  N  =  (Inv `  C )
2 invfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fveq2 5872 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
4 invfval.b . . . . . 6  |-  B  =  ( Base `  C
)
53, 4syl6eqr 2526 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
6 fveq2 5872 . . . . . . . 8  |-  ( c  =  C  ->  (Sect `  c )  =  (Sect `  C ) )
7 invfval.s . . . . . . . 8  |-  S  =  (Sect `  C )
86, 7syl6eqr 2526 . . . . . . 7  |-  ( c  =  C  ->  (Sect `  c )  =  S )
98oveqd 6312 . . . . . 6  |-  ( c  =  C  ->  (
x (Sect `  c
) y )  =  ( x S y ) )
108oveqd 6312 . . . . . . 7  |-  ( c  =  C  ->  (
y (Sect `  c
) x )  =  ( y S x ) )
1110cnveqd 5184 . . . . . 6  |-  ( c  =  C  ->  `' ( y (Sect `  c ) x )  =  `' ( y S x ) )
129, 11ineq12d 3706 . . . . 5  |-  ( c  =  C  ->  (
( x (Sect `  c ) y )  i^i  `' ( y (Sect `  c )
x ) )  =  ( ( x S y )  i^i  `' ( y S x ) ) )
135, 5, 12mpt2eq123dv 6354 . . . 4  |-  ( c  =  C  ->  (
x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) )  =  ( x  e.  B , 
y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
14 df-inv 15021 . . . 4  |- Inv  =  ( c  e.  Cat  |->  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) ) )
15 fvex 5882 . . . . . 6  |-  ( Base `  C )  e.  _V
164, 15eqeltri 2551 . . . . 5  |-  B  e. 
_V
1716, 16mpt2ex 6872 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) )  e.  _V
1813, 14, 17fvmpt 5957 . . 3  |-  ( C  e.  Cat  ->  (Inv `  C )  =  ( x  e.  B , 
y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
192, 18syl 16 . 2  |-  ( ph  ->  (Inv `  C )  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
201, 19syl5eq 2520 1  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3118    i^i cin 3480   `'ccnv 5004   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   Basecbs 14507   Catccat 14936  Sectcsect 15017  Invcinv 15018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-inv 15021
This theorem is referenced by:  invfval  15031  isoval  15037
  Copyright terms: Public domain W3C validator