Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssOLD Structured version   Unicode version

Theorem intssOLD 4271
 Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) Obsolete version of intss 4270 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
intssOLD

Proof of Theorem intssOLD
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 79 . . . . 5
21al2imi 1683 . . . 4
3 vex 3081 . . . . 5
43elint 4255 . . . 4
53elint 4255 . . . 4
62, 4, 53imtr4g 273 . . 3
76alrimiv 1763 . 2
8 dfss2 3450 . 2
9 dfss2 3450 . 2
107, 8, 93imtr4i 269 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1435   wcel 1867   wss 3433  cint 4249 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-v 3080  df-in 3440  df-ss 3447  df-int 4250 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator