![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intn3an3d | Structured version Visualization version Unicode version |
Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
intn3and.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
intn3an3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intn3and.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp3 1011 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 125 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 189 df-an 373 df-3an 988 |
This theorem is referenced by: en3lp 8126 winainflem 9123 spthispth 25315 2spotdisj 25801 gtnelioc 37597 icccncfext 37775 fourierdlem10 37989 |
Copyright terms: Public domain | W3C validator |