MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intminss Structured version   Unicode version

Theorem intminss 4298
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
intminss  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 3254 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
3 intss1 4286 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  |^| { x  e.  B  |  ph }  C_  A )
42, 3sylbir 213 1  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {crab 2808    C_ wss 3461   |^|cint 4271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-rab 2813  df-v 3108  df-in 3468  df-ss 3475  df-int 4272
This theorem is referenced by:  onintss  4917  knatar  6228  cardonle  8329  coftr  8644  wuncss  9112  ist1-3  20017  sigagenss  28379  nodenselem5  29685  nobndlem6  29697  nobndlem8  29699  fneint  30406  igenmin  30701  pclclN  36012  dfrcl2  38193
  Copyright terms: Public domain W3C validator