MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Unicode version

Theorem intirr 4968
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Distinct variable group:    x, R

Proof of Theorem intirr
StepHypRef Expression
1 incom 3269 . . . 4  |-  ( R  i^i  _I  )  =  (  _I  i^i  R
)
21eqeq1i 2260 . . 3  |-  ( ( R  i^i  _I  )  =  (/)  <->  (  _I  i^i  R )  =  (/) )
3 disj2 3409 . . 3  |-  ( (  _I  i^i  R )  =  (/)  <->  _I  C_  ( _V 
\  R ) )
4 reli 4720 . . . 4  |-  Rel  _I
5 ssrel 4683 . . . 4  |-  ( Rel 
_I  ->  (  _I  C_  ( _V  \  R )  <->  A. x A. y (
<. x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) ) )
64, 5ax-mp 10 . . 3  |-  (  _I  C_  ( _V  \  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
72, 3, 63bitri 264 . 2  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
8 eqcom 2255 . . . . 5  |-  ( y  =  x  <->  x  =  y )
9 vex 2730 . . . . . 6  |-  y  e. 
_V
109ideq 4743 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
11 df-br 3921 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
128, 10, 113bitr2i 266 . . . 4  |-  ( y  =  x  <->  <. x ,  y >.  e.  _I  )
13 opex 4130 . . . . . . 7  |-  <. x ,  y >.  e.  _V
1413biantrur 494 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  R  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
15 eldif 3088 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  \  R
)  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
1614, 15bitr4i 245 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  R  <->  <. x ,  y
>.  e.  ( _V  \  R ) )
17 df-br 3921 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
1816, 17xchnxbir 302 . . . 4  |-  ( -.  x R y  <->  <. x ,  y >.  e.  ( _V  \  R ) )
1912, 18imbi12i 318 . . 3  |-  ( ( y  =  x  ->  -.  x R y )  <-> 
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
20192albii 1555 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x A. y ( <. x ,  y >.  e.  _I  -> 
<. x ,  y >.  e.  ( _V  \  R
) ) )
21 nfv 1629 . . . 4  |-  F/ y  -.  x R x
22 breq2 3924 . . . . 5  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
2322notbid 287 . . . 4  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
2421, 23equsal 1850 . . 3  |-  ( A. y ( y  =  x  ->  -.  x R y )  <->  -.  x R x )
2524albii 1554 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x  -.  x R x )
267, 20, 253bitr2i 266 1  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   _Vcvv 2727    \ cdif 3075    i^i cin 3077    C_ wss 3078   (/)c0 3362   <.cop 3547   class class class wbr 3920    _I cid 4197   Rel wrel 4585
This theorem is referenced by:  hartogslem1  7141  hausdiag  17171
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595
  Copyright terms: Public domain W3C validator