MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intgru Structured version   Unicode version

Theorem intgru 9241
Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
intgru  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  |^| A  e.  Univ )

Proof of Theorem intgru
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 463 . . 3  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  A  =/=  (/) )
2 intex 4578 . . 3  |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
31, 2sylib 200 . 2  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  |^| A  e.  _V )
4 dfss3 3455 . . . . 5  |-  ( A 
C_  Univ  <->  A. u  e.  A  u  e.  Univ )
5 grutr 9220 . . . . . 6  |-  ( u  e.  Univ  ->  Tr  u
)
65ralimi 2819 . . . . 5  |-  ( A. u  e.  A  u  e.  Univ  ->  A. u  e.  A  Tr  u
)
74, 6sylbi 199 . . . 4  |-  ( A 
C_  Univ  ->  A. u  e.  A  Tr  u
)
8 trint 4531 . . . 4  |-  ( A. u  e.  A  Tr  u  ->  Tr  |^| A )
97, 8syl 17 . . 3  |-  ( A 
C_  Univ  ->  Tr  |^| A
)
109adantr 467 . 2  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  Tr  |^| A )
11 grupw 9222 . . . . . . . . . 10  |-  ( ( u  e.  Univ  /\  x  e.  u )  ->  ~P x  e.  u )
1211ex 436 . . . . . . . . 9  |-  ( u  e.  Univ  ->  ( x  e.  u  ->  ~P x  e.  u )
)
1312ral2imi 2814 . . . . . . . 8  |-  ( A. u  e.  A  u  e.  Univ  ->  ( A. u  e.  A  x  e.  u  ->  A. u  e.  A  ~P x  e.  u ) )
14 vex 3085 . . . . . . . . 9  |-  x  e. 
_V
1514elint2 4260 . . . . . . . 8  |-  ( x  e.  |^| A  <->  A. u  e.  A  x  e.  u )
1614pwex 4605 . . . . . . . . 9  |-  ~P x  e.  _V
1716elint2 4260 . . . . . . . 8  |-  ( ~P x  e.  |^| A  <->  A. u  e.  A  ~P x  e.  u )
1813, 15, 173imtr4g 274 . . . . . . 7  |-  ( A. u  e.  A  u  e.  Univ  ->  ( x  e.  |^| A  ->  ~P x  e.  |^| A ) )
1918imp 431 . . . . . 6  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  ->  ~P x  e.  |^| A
)
2019adantlr 720 . . . . 5  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ~P x  e. 
|^| A )
21 r19.26 2956 . . . . . . . . . 10  |-  ( A. u  e.  A  (
u  e.  Univ  /\  x  e.  u )  <->  ( A. u  e.  A  u  e.  Univ  /\  A. u  e.  A  x  e.  u ) )
22 grupr 9224 . . . . . . . . . . . 12  |-  ( ( u  e.  Univ  /\  x  e.  u  /\  y  e.  u )  ->  { x ,  y }  e.  u )
23223expia 1208 . . . . . . . . . . 11  |-  ( ( u  e.  Univ  /\  x  e.  u )  ->  (
y  e.  u  ->  { x ,  y }  e.  u ) )
2423ral2imi 2814 . . . . . . . . . 10  |-  ( A. u  e.  A  (
u  e.  Univ  /\  x  e.  u )  ->  ( A. u  e.  A  y  e.  u  ->  A. u  e.  A  {
x ,  y }  e.  u ) )
2521, 24sylbir 217 . . . . . . . . 9  |-  ( ( A. u  e.  A  u  e.  Univ  /\  A. u  e.  A  x  e.  u )  ->  ( A. u  e.  A  y  e.  u  ->  A. u  e.  A  {
x ,  y }  e.  u ) )
26 vex 3085 . . . . . . . . . 10  |-  y  e. 
_V
2726elint2 4260 . . . . . . . . 9  |-  ( y  e.  |^| A  <->  A. u  e.  A  y  e.  u )
28 prex 4661 . . . . . . . . . 10  |-  { x ,  y }  e.  _V
2928elint2 4260 . . . . . . . . 9  |-  ( { x ,  y }  e.  |^| A  <->  A. u  e.  A  { x ,  y }  e.  u )
3025, 27, 293imtr4g 274 . . . . . . . 8  |-  ( ( A. u  e.  A  u  e.  Univ  /\  A. u  e.  A  x  e.  u )  ->  (
y  e.  |^| A  ->  { x ,  y }  e.  |^| A
) )
3115, 30sylan2b 478 . . . . . . 7  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  -> 
( y  e.  |^| A  ->  { x ,  y }  e.  |^| A ) )
3231ralrimiv 2838 . . . . . 6  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  ->  A. y  e.  |^| A { x ,  y }  e.  |^| A
)
3332adantlr 720 . . . . 5  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. y  e.  |^| A { x ,  y }  e.  |^| A
)
34 elmapg 7491 . . . . . . . . . 10  |-  ( (
|^| A  e.  _V  /\  x  e.  _V )  ->  ( y  e.  (
|^| A  ^m  x
)  <->  y : x -->
|^| A ) )
3514, 34mpan2 676 . . . . . . . . 9  |-  ( |^| A  e.  _V  ->  ( y  e.  ( |^| A  ^m  x )  <->  y :
x --> |^| A ) )
362, 35sylbi 199 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( y  e.  ( |^| A  ^m  x )  <->  y :
x --> |^| A ) )
3736ad2antlr 732 . . . . . . 7  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ( y  e.  ( |^| A  ^m  x )  <->  y :
x --> |^| A ) )
38 intss1 4268 . . . . . . . . . . . 12  |-  ( u  e.  A  ->  |^| A  C_  u )
39 fss 5752 . . . . . . . . . . . 12  |-  ( ( y : x --> |^| A  /\  |^| A  C_  u
)  ->  y :
x --> u )
4038, 39sylan2 477 . . . . . . . . . . 11  |-  ( ( y : x --> |^| A  /\  u  e.  A
)  ->  y :
x --> u )
4140ralrimiva 2840 . . . . . . . . . 10  |-  ( y : x --> |^| A  ->  A. u  e.  A  y : x --> u )
42 gruurn 9225 . . . . . . . . . . . . . 14  |-  ( ( u  e.  Univ  /\  x  e.  u  /\  y : x --> u )  ->  U. ran  y  e.  u )
43423expia 1208 . . . . . . . . . . . . 13  |-  ( ( u  e.  Univ  /\  x  e.  u )  ->  (
y : x --> u  ->  U. ran  y  e.  u
) )
4443ral2imi 2814 . . . . . . . . . . . 12  |-  ( A. u  e.  A  (
u  e.  Univ  /\  x  e.  u )  ->  ( A. u  e.  A  y : x --> u  ->  A. u  e.  A  U. ran  y  e.  u
) )
4521, 44sylbir 217 . . . . . . . . . . 11  |-  ( ( A. u  e.  A  u  e.  Univ  /\  A. u  e.  A  x  e.  u )  ->  ( A. u  e.  A  y : x --> u  ->  A. u  e.  A  U. ran  y  e.  u
) )
4615, 45sylan2b 478 . . . . . . . . . 10  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  -> 
( A. u  e.  A  y : x --> u  ->  A. u  e.  A  U. ran  y  e.  u ) )
4741, 46syl5 34 . . . . . . . . 9  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  -> 
( y : x -->
|^| A  ->  A. u  e.  A  U. ran  y  e.  u ) )
4826rnex 6739 . . . . . . . . . . 11  |-  ran  y  e.  _V
4948uniex 6599 . . . . . . . . . 10  |-  U. ran  y  e.  _V
5049elint2 4260 . . . . . . . . 9  |-  ( U. ran  y  e.  |^| A  <->  A. u  e.  A  U. ran  y  e.  u
)
5147, 50syl6ibr 231 . . . . . . . 8  |-  ( ( A. u  e.  A  u  e.  Univ  /\  x  e.  |^| A )  -> 
( y : x -->
|^| A  ->  U. ran  y  e.  |^| A ) )
5251adantlr 720 . . . . . . 7  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ( y : x --> |^| A  ->  U. ran  y  e.  |^| A ) )
5337, 52sylbid 219 . . . . . 6  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ( y  e.  ( |^| A  ^m  x )  ->  U. ran  y  e.  |^| A ) )
5453ralrimiv 2838 . . . . 5  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. y  e.  (
|^| A  ^m  x
) U. ran  y  e.  |^| A )
5520, 33, 543jca 1186 . . . 4  |-  ( ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ( ~P x  e.  |^| A  /\  A. y  e.  |^| A {
x ,  y }  e.  |^| A  /\  A. y  e.  ( |^| A  ^m  x ) U. ran  y  e.  |^| A
) )
5655ralrimiva 2840 . . 3  |-  ( ( A. u  e.  A  u  e.  Univ  /\  A  =/=  (/) )  ->  A. x  e.  |^| A ( ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A  /\  A. y  e.  (
|^| A  ^m  x
) U. ran  y  e.  |^| A ) )
574, 56sylanb 475 . 2  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  A. x  e.  |^| A ( ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A  /\  A. y  e.  (
|^| A  ^m  x
) U. ran  y  e.  |^| A ) )
58 elgrug 9219 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e.  Univ  <->  ( Tr  |^| A  /\  A. x  e.  |^| A ( ~P x  e.  |^| A  /\  A. y  e. 
|^| A { x ,  y }  e.  |^| A  /\  A. y  e.  ( |^| A  ^m  x ) U. ran  y  e.  |^| A ) ) ) )
5958biimpar 488 . 2  |-  ( (
|^| A  e.  _V  /\  ( Tr  |^| A  /\  A. x  e.  |^| A ( ~P x  e.  |^| A  /\  A. y  e.  |^| A {
x ,  y }  e.  |^| A  /\  A. y  e.  ( |^| A  ^m  x ) U. ran  y  e.  |^| A
) ) )  ->  |^| A  e.  Univ )
603, 10, 57, 59syl12anc 1263 1  |-  ( ( A  C_  Univ  /\  A  =/=  (/) )  ->  |^| A  e.  Univ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    e. wcel 1869    =/= wne 2619   A.wral 2776   _Vcvv 3082    C_ wss 3437   (/)c0 3762   ~Pcpw 3980   {cpr 3999   U.cuni 4217   |^|cint 4253   Tr wtr 4516   ran crn 4852   -->wf 5595  (class class class)co 6303    ^m cmap 7478   Univcgru 9217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-int 4254  df-br 4422  df-opab 4481  df-tr 4517  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-map 7480  df-gru 9218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator