MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inres Structured version   Unicode version

Theorem inres 5279
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
inres  |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )

Proof of Theorem inres
StepHypRef Expression
1 inass 3694 . 2  |-  ( ( A  i^i  B )  i^i  ( C  X.  _V ) )  =  ( A  i^i  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 5000 . 2  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  i^i  B
)  i^i  ( C  X.  _V ) )
3 df-res 5000 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
43ineq2i 3683 . 2  |-  ( A  i^i  ( B  |`  C ) )  =  ( A  i^i  ( B  i^i  ( C  X.  _V ) ) )
51, 2, 43eqtr4ri 2494 1  |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398   _Vcvv 3106    i^i cin 3460    X. cxp 4986    |` cres 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-in 3468  df-res 5000
This theorem is referenced by:  resindm  5306  fninfp  6074
  Copyright terms: Public domain W3C validator