MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inpreima Structured version   Unicode version

Theorem inpreima 5849
Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
inpreima  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )

Proof of Theorem inpreima
StepHypRef Expression
1 funcnvcnv 5495 . 2  |-  ( Fun 
F  ->  Fun  `' `' F )
2 imain 5513 . 2  |-  ( Fun  `' `' F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
31, 2syl 16 1  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    i^i cin 3346   `'ccnv 4858   "cima 4862   Fun wfun 5431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pr 4550
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-sn 3897  df-pr 3899  df-op 3903  df-br 4312  df-opab 4370  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-fun 5439
This theorem is referenced by:  frnsuppeq  6721  nn0suppOLD  10653  ofco2  18351  cnrest2  18909  cnhaus  18977  kgencn3  19150  qtoptop2  19291  basqtop  19303  ismbfd  21137  mbfimaopn2  21154  i1fima  21175  i1fima2  21176  i1fd  21178  disjpreima  25947  fimacnvinrn  25971  sspreima  25981  fsuppeq  29473
  Copyright terms: Public domain W3C validator