MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  innei Structured version   Unicode version

Theorem innei 19603
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Proposition Vii of [BourbakiTop1] p. I.3 . (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem innei
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  U. J  =  U. J
21neii1 19584 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
3 ssinss1 3711 . . . 4  |-  ( N 
C_  U. J  ->  ( N  i^i  M )  C_  U. J )
42, 3syl 16 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( N  i^i  M
)  C_  U. J )
543adant3 1017 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  C_  U. J
)
6 neii2 19586 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
7 neii2 19586 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  S ) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) )
86, 7anim12dan 837 . . . 4  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )
9 inopn 19385 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  h  e.  J  /\  v  e.  J )  ->  ( h  i^i  v
)  e.  J )
1093expa 1197 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  v  e.  J
)  ->  ( h  i^i  v )  e.  J
)
11 ssin 3705 . . . . . . . . . . . . . 14  |-  ( ( S  C_  h  /\  S  C_  v )  <->  S  C_  (
h  i^i  v )
)
1211biimpi 194 . . . . . . . . . . . . 13  |-  ( ( S  C_  h  /\  S  C_  v )  ->  S  C_  ( h  i^i  v ) )
13 ss2in 3710 . . . . . . . . . . . . 13  |-  ( ( h  C_  N  /\  v  C_  M )  -> 
( h  i^i  v
)  C_  ( N  i^i  M ) )
1412, 13anim12i 566 . . . . . . . . . . . 12  |-  ( ( ( S  C_  h  /\  S  C_  v )  /\  ( h  C_  N  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
1514an4s 826 . . . . . . . . . . 11  |-  ( ( ( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
16 sseq2 3511 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  ( S  C_  g  <->  S  C_  (
h  i^i  v )
) )
17 sseq1 3510 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  (
g  C_  ( N  i^i  M )  <->  ( h  i^i  v )  C_  ( N  i^i  M ) ) )
1816, 17anbi12d 710 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  (
( S  C_  g  /\  g  C_  ( N  i^i  M ) )  <-> 
( S  C_  (
h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) ) )
1918rspcev 3196 . . . . . . . . . . 11  |-  ( ( ( h  i^i  v
)  e.  J  /\  ( S  C_  ( h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2010, 15, 19syl2an 477 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  (
( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2120expr 615 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  -> 
( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2221an32s 804 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  /\  v  e.  J )  ->  ( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2322rexlimdva 2935 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N
) )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2423ex 434 . . . . . 6  |-  ( ( J  e.  Top  /\  h  e.  J )  ->  ( ( S  C_  h  /\  h  C_  N
)  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2524rexlimdva 2935 . . . . 5  |-  ( J  e.  Top  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  -> 
( E. v  e.  J  ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2625imp32 433 . . . 4  |-  ( ( J  e.  Top  /\  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
278, 26syldan 470 . . 3  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
28273impb 1193 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
291neiss2 19579 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
301isnei 19581 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
3129, 30syldan 470 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( ( N  i^i  M )  e.  ( ( nei `  J ) `
 S )  <->  ( ( N  i^i  M )  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
32313adant3 1017 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
335, 28, 32mpbir2and 922 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   E.wrex 2794    i^i cin 3460    C_ wss 3461   U.cuni 4234   ` cfv 5578   Topctop 19371   neicnei 19575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-top 19376  df-nei 19576
This theorem is referenced by:  neifil  20358  neificl  30221
  Copyright terms: Public domain W3C validator