Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Unicode version

Theorem inixp 31759
Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem inixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 an4 831 . . . 4  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( (
f  Fn  A  /\  f  Fn  A )  /\  ( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
2 anidm 648 . . . . 5  |-  ( ( f  Fn  A  /\  f  Fn  A )  <->  f  Fn  A )
3 r19.26 2953 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
4 elin 3646 . . . . . . . 8  |-  ( ( f `  x )  e.  ( B  i^i  C )  <->  ( ( f `
 x )  e.  B  /\  ( f `
 x )  e.  C ) )
54bicomi 205 . . . . . . 7  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( f `  x
)  e.  ( B  i^i  C ) )
65ralbii 2854 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <->  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) )
73, 6bitr3i 254 . . . . 5  |-  ( ( A. x  e.  A  ( f `  x
)  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C )  <->  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) )
82, 7anbi12i 701 . . . 4  |-  ( ( ( f  Fn  A  /\  f  Fn  A
)  /\  ( A. x  e.  A  (
f `  x )  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
91, 8bitri 252 . . 3  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
10 vex 3081 . . . . 5  |-  f  e. 
_V
1110elixp 7528 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
1210elixp 7528 . . . 4  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
1311, 12anbi12i 701 . . 3  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
1410elixp 7528 . . 3  |-  ( f  e.  X_ x  e.  A  ( B  i^i  C )  <-> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) ) )
159, 13, 143bitr4i 280 . 2  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  f  e.  X_ x  e.  A  ( B  i^i  C ) )
1615ineqri 3653 1  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773    i^i cin 3432    Fn wfn 5587   ` cfv 5592   X_cixp 7521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600  df-ixp 7522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator