Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Unicode version

Theorem inixp 30049
Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem inixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 an4 822 . . . 4  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( (
f  Fn  A  /\  f  Fn  A )  /\  ( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
2 anidm 644 . . . . 5  |-  ( ( f  Fn  A  /\  f  Fn  A )  <->  f  Fn  A )
3 r19.26 2989 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
4 elin 3687 . . . . . . . 8  |-  ( ( f `  x )  e.  ( B  i^i  C )  <->  ( ( f `
 x )  e.  B  /\  ( f `
 x )  e.  C ) )
54bicomi 202 . . . . . . 7  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( f `  x
)  e.  ( B  i^i  C ) )
65ralbii 2895 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <->  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) )
73, 6bitr3i 251 . . . . 5  |-  ( ( A. x  e.  A  ( f `  x
)  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C )  <->  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) )
82, 7anbi12i 697 . . . 4  |-  ( ( ( f  Fn  A  /\  f  Fn  A
)  /\  ( A. x  e.  A  (
f `  x )  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
91, 8bitri 249 . . 3  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
10 vex 3116 . . . . 5  |-  f  e. 
_V
1110elixp 7477 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
1210elixp 7477 . . . 4  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
1311, 12anbi12i 697 . . 3  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
1410elixp 7477 . . 3  |-  ( f  e.  X_ x  e.  A  ( B  i^i  C )  <-> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) ) )
159, 13, 143bitr4i 277 . 2  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  f  e.  X_ x  e.  A  ( B  i^i  C ) )
1615ineqri 3692 1  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    Fn wfn 5583   ` cfv 5588   X_cixp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fn 5591  df-fv 5596  df-ixp 7471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator