MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ingru Structured version   Visualization version   Unicode version

Theorem ingru 9240
Description: The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ingru  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    U( x, y)

Proof of Theorem ingru
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ineq1 3627 . . . . 5  |-  ( u  =  U  ->  (
u  i^i  A )  =  ( U  i^i  A ) )
21eleq1d 2513 . . . 4  |-  ( u  =  U  ->  (
( u  i^i  A
)  e.  Univ  <->  ( U  i^i  A )  e.  Univ ) )
32imbi2d 318 . . 3  |-  ( u  =  U  ->  (
( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ )  <->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) ) )
4 elgrug 9217 . . . . . 6  |-  ( u  e.  Univ  ->  ( u  e.  Univ  <->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) ) ) )
54ibi 245 . . . . 5  |-  ( u  e.  Univ  ->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )
) )
6 trin 4507 . . . . . . 7  |-  ( ( Tr  u  /\  Tr  A )  ->  Tr  ( u  i^i  A ) )
76ex 436 . . . . . 6  |-  ( Tr  u  ->  ( Tr  A  ->  Tr  ( u  i^i  A ) ) )
8 inss1 3652 . . . . . . . 8  |-  ( u  i^i  A )  C_  u
9 ssralv 3493 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) ) )
108, 9ax-mp 5 . . . . . . 7  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) )
11 inss2 3653 . . . . . . . 8  |-  ( u  i^i  A )  C_  A
12 ssralv 3493 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) )
14 elin 3617 . . . . . . . . . . . . 13  |-  ( ~P x  e.  ( u  i^i  A )  <->  ( ~P x  e.  u  /\  ~P x  e.  A
) )
1514simplbi2 631 . . . . . . . . . . . 12  |-  ( ~P x  e.  u  -> 
( ~P x  e.  A  ->  ~P x  e.  ( u  i^i  A
) ) )
16 ssralv 3493 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. y  e.  u  { x ,  y }  e.  u  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  u ) )
178, 16ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  u
)
18 ssralv 3493 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  A ) )
1911, 18ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. y  e.  A  {
x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A
)
20 elin 3617 . . . . . . . . . . . . . . 15  |-  ( { x ,  y }  e.  ( u  i^i 
A )  <->  ( {
x ,  y }  e.  u  /\  {
x ,  y }  e.  A ) )
2120simplbi2 631 . . . . . . . . . . . . . 14  |-  ( { x ,  y }  e.  u  ->  ( { x ,  y }  e.  A  ->  { x ,  y }  e.  ( u  i^i  A ) ) )
2221ral2imi 2776 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( u  i^i  A ) { x ,  y }  e.  u  ->  ( A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2317, 19, 22syl2im 39 . . . . . . . . . . . 12  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2415, 23im2anan9 846 . . . . . . . . . . 11  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  -> 
( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A ) ) ) )
25 vex 3048 . . . . . . . . . . . . . 14  |-  u  e. 
_V
26 mapss 7514 . . . . . . . . . . . . . 14  |-  ( ( u  e.  _V  /\  ( u  i^i  A ) 
C_  u )  -> 
( ( u  i^i 
A )  ^m  x
)  C_  ( u  ^m  x ) )
2725, 8, 26mp2an 678 . . . . . . . . . . . . 13  |-  ( ( u  i^i  A )  ^m  x )  C_  ( u  ^m  x
)
28 ssralv 3493 . . . . . . . . . . . . 13  |-  ( ( ( u  i^i  A
)  ^m  x )  C_  ( u  ^m  x
)  ->  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
) )
2927, 28ax-mp 5 . . . . . . . . . . . 12  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
)
3025inex1 4544 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  e. 
_V
31 vex 3048 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3230, 31elmap 7500 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  <->  y :
x --> ( u  i^i 
A ) )
33 fss 5737 . . . . . . . . . . . . . . . . 17  |-  ( ( y : x --> ( u  i^i  A )  /\  ( u  i^i  A ) 
C_  A )  -> 
y : x --> A )
3411, 33mpan2 677 . . . . . . . . . . . . . . . 16  |-  ( y : x --> ( u  i^i  A )  -> 
y : x --> A )
3532, 34sylbi 199 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  y : x --> A )
3635imim1i 60 . . . . . . . . . . . . . 14  |-  ( ( y : x --> A  ->  U. ran  y  e.  A
)  ->  ( y  e.  ( ( u  i^i 
A )  ^m  x
)  ->  U. ran  y  e.  A ) )
3736alimi 1684 . . . . . . . . . . . . 13  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  U. ran  y  e.  A )
)
38 df-ral 2742 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  A  <->  A. y
( y  e.  ( ( u  i^i  A
)  ^m  x )  ->  U. ran  y  e.  A ) )
3937, 38sylibr 216 . . . . . . . . . . . 12  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A
)
40 elin 3617 . . . . . . . . . . . . . 14  |-  ( U. ran  y  e.  (
u  i^i  A )  <->  ( U. ran  y  e.  u  /\  U. ran  y  e.  A )
)
4140simplbi2 631 . . . . . . . . . . . . 13  |-  ( U. ran  y  e.  u  ->  ( U. ran  y  e.  A  ->  U. ran  y  e.  ( u  i^i  A ) ) )
4241ral2imi 2776 . . . . . . . . . . . 12  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  u  ->  ( A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  ( u  i^i  A ) ) )
4329, 39, 42syl2im 39 . . . . . . . . . . 11  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  ( A. y ( y : x --> A  ->  U. ran  y  e.  A
)  ->  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4424, 43im2anan9 846 . . . . . . . . . 10  |-  ( ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
45443impa 1203 . . . . . . . . 9  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( (
( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
46 df-3an 987 . . . . . . . . 9  |-  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  <->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )
47 df-3an 987 . . . . . . . . 9  |-  ( ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) )  <->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4845, 46, 473imtr4g 274 . . . . . . . 8  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
4948ral2imi 2776 . . . . . . 7  |-  ( A. x  e.  ( u  i^i  A ) ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) )  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5010, 13, 49syl2im 39 . . . . . 6  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
517, 50im2anan9 846 . . . . 5  |-  ( ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) )  ->  (
( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
525, 51syl 17 . . . 4  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
53 elgrug 9217 . . . . 5  |-  ( ( u  i^i  A )  e.  _V  ->  (
( u  i^i  A
)  e.  Univ  <->  ( Tr  ( u  i^i  A )  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
5430, 53ax-mp 5 . . . 4  |-  ( ( u  i^i  A )  e.  Univ  <->  ( Tr  (
u  i^i  A )  /\  A. x  e.  ( u  i^i  A ) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5552, 54syl6ibr 231 . . 3  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ ) )
563, 55vtoclga 3113 . 2  |-  ( U  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) )
5756com12 32 1  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985   A.wal 1442    = wceq 1444    e. wcel 1887   A.wral 2737   _Vcvv 3045    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   {cpr 3970   U.cuni 4198   Tr wtr 4497   ran crn 4835   -->wf 5578  (class class class)co 6290    ^m cmap 7472   Univcgru 9215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-map 7474  df-gru 9216
This theorem is referenced by:  wfgru  9241
  Copyright terms: Public domain W3C validator