MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ingru Structured version   Unicode version

Theorem ingru 9241
Description: The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ingru  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    U( x, y)

Proof of Theorem ingru
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ineq1 3657 . . . . 5  |-  ( u  =  U  ->  (
u  i^i  A )  =  ( U  i^i  A ) )
21eleq1d 2491 . . . 4  |-  ( u  =  U  ->  (
( u  i^i  A
)  e.  Univ  <->  ( U  i^i  A )  e.  Univ ) )
32imbi2d 317 . . 3  |-  ( u  =  U  ->  (
( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ )  <->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) ) )
4 elgrug 9218 . . . . . 6  |-  ( u  e.  Univ  ->  ( u  e.  Univ  <->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) ) ) )
54ibi 244 . . . . 5  |-  ( u  e.  Univ  ->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )
) )
6 trin 4525 . . . . . . 7  |-  ( ( Tr  u  /\  Tr  A )  ->  Tr  ( u  i^i  A ) )
76ex 435 . . . . . 6  |-  ( Tr  u  ->  ( Tr  A  ->  Tr  ( u  i^i  A ) ) )
8 inss1 3682 . . . . . . . 8  |-  ( u  i^i  A )  C_  u
9 ssralv 3525 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) ) )
108, 9ax-mp 5 . . . . . . 7  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) )
11 inss2 3683 . . . . . . . 8  |-  ( u  i^i  A )  C_  A
12 ssralv 3525 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) )
14 elin 3649 . . . . . . . . . . . . 13  |-  ( ~P x  e.  ( u  i^i  A )  <->  ( ~P x  e.  u  /\  ~P x  e.  A
) )
1514simplbi2 629 . . . . . . . . . . . 12  |-  ( ~P x  e.  u  -> 
( ~P x  e.  A  ->  ~P x  e.  ( u  i^i  A
) ) )
16 ssralv 3525 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. y  e.  u  { x ,  y }  e.  u  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  u ) )
178, 16ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  u
)
18 ssralv 3525 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  A ) )
1911, 18ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. y  e.  A  {
x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A
)
20 elin 3649 . . . . . . . . . . . . . . 15  |-  ( { x ,  y }  e.  ( u  i^i 
A )  <->  ( {
x ,  y }  e.  u  /\  {
x ,  y }  e.  A ) )
2120simplbi2 629 . . . . . . . . . . . . . 14  |-  ( { x ,  y }  e.  u  ->  ( { x ,  y }  e.  A  ->  { x ,  y }  e.  ( u  i^i  A ) ) )
2221ral2imi 2813 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( u  i^i  A ) { x ,  y }  e.  u  ->  ( A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2317, 19, 22syl2im 39 . . . . . . . . . . . 12  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2415, 23im2anan9 843 . . . . . . . . . . 11  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  -> 
( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A ) ) ) )
25 vex 3084 . . . . . . . . . . . . . 14  |-  u  e. 
_V
26 mapss 7519 . . . . . . . . . . . . . 14  |-  ( ( u  e.  _V  /\  ( u  i^i  A ) 
C_  u )  -> 
( ( u  i^i 
A )  ^m  x
)  C_  ( u  ^m  x ) )
2725, 8, 26mp2an 676 . . . . . . . . . . . . 13  |-  ( ( u  i^i  A )  ^m  x )  C_  ( u  ^m  x
)
28 ssralv 3525 . . . . . . . . . . . . 13  |-  ( ( ( u  i^i  A
)  ^m  x )  C_  ( u  ^m  x
)  ->  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
) )
2927, 28ax-mp 5 . . . . . . . . . . . 12  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
)
3025inex1 4562 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  e. 
_V
31 vex 3084 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3230, 31elmap 7505 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  <->  y :
x --> ( u  i^i 
A ) )
33 fss 5751 . . . . . . . . . . . . . . . . 17  |-  ( ( y : x --> ( u  i^i  A )  /\  ( u  i^i  A ) 
C_  A )  -> 
y : x --> A )
3411, 33mpan2 675 . . . . . . . . . . . . . . . 16  |-  ( y : x --> ( u  i^i  A )  -> 
y : x --> A )
3532, 34sylbi 198 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  y : x --> A )
3635imim1i 60 . . . . . . . . . . . . . 14  |-  ( ( y : x --> A  ->  U. ran  y  e.  A
)  ->  ( y  e.  ( ( u  i^i 
A )  ^m  x
)  ->  U. ran  y  e.  A ) )
3736alimi 1680 . . . . . . . . . . . . 13  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  U. ran  y  e.  A )
)
38 df-ral 2780 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  A  <->  A. y
( y  e.  ( ( u  i^i  A
)  ^m  x )  ->  U. ran  y  e.  A ) )
3937, 38sylibr 215 . . . . . . . . . . . 12  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A
)
40 elin 3649 . . . . . . . . . . . . . 14  |-  ( U. ran  y  e.  (
u  i^i  A )  <->  ( U. ran  y  e.  u  /\  U. ran  y  e.  A )
)
4140simplbi2 629 . . . . . . . . . . . . 13  |-  ( U. ran  y  e.  u  ->  ( U. ran  y  e.  A  ->  U. ran  y  e.  ( u  i^i  A ) ) )
4241ral2imi 2813 . . . . . . . . . . . 12  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  u  ->  ( A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  ( u  i^i  A ) ) )
4329, 39, 42syl2im 39 . . . . . . . . . . 11  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  ( A. y ( y : x --> A  ->  U. ran  y  e.  A
)  ->  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4424, 43im2anan9 843 . . . . . . . . . 10  |-  ( ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
45443impa 1200 . . . . . . . . 9  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( (
( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
46 df-3an 984 . . . . . . . . 9  |-  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  <->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )
47 df-3an 984 . . . . . . . . 9  |-  ( ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) )  <->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4845, 46, 473imtr4g 273 . . . . . . . 8  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
4948ral2imi 2813 . . . . . . 7  |-  ( A. x  e.  ( u  i^i  A ) ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) )  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5010, 13, 49syl2im 39 . . . . . 6  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
517, 50im2anan9 843 . . . . 5  |-  ( ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) )  ->  (
( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
525, 51syl 17 . . . 4  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
53 elgrug 9218 . . . . 5  |-  ( ( u  i^i  A )  e.  _V  ->  (
( u  i^i  A
)  e.  Univ  <->  ( Tr  ( u  i^i  A )  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
5430, 53ax-mp 5 . . . 4  |-  ( ( u  i^i  A )  e.  Univ  <->  ( Tr  (
u  i^i  A )  /\  A. x  e.  ( u  i^i  A ) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5552, 54syl6ibr 230 . . 3  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ ) )
563, 55vtoclga 3145 . 2  |-  ( U  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) )
5756com12 32 1  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    i^i cin 3435    C_ wss 3436   ~Pcpw 3979   {cpr 3998   U.cuni 4216   Tr wtr 4515   ran crn 4851   -->wf 5594  (class class class)co 6302    ^m cmap 7477   Univcgru 9216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-fv 5606  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-map 7479  df-gru 9217
This theorem is referenced by:  wfgru  9242
  Copyright terms: Public domain W3C validator