MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm Structured version   Unicode version

Theorem infxpidm 8928
Description: The Cartesian product of an infinite set with itself is idempotent. This theorem (which is an AC equivalent) provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This proof follows as a corollary of infxpen 8383. (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
infxpidm  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)

Proof of Theorem infxpidm
StepHypRef Expression
1 reldom 7514 . . . 4  |-  Rel  ~<_
21brrelex2i 5035 . . 3  |-  ( om  ~<_  A  ->  A  e.  _V )
3 numth3 8841 . . 3  |-  ( A  e.  _V  ->  A  e.  dom  card )
42, 3syl 16 . 2  |-  ( om  ~<_  A  ->  A  e.  dom  card )
5 infxpidm2 8385 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
64, 5mpancom 669 1  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1762   _Vcvv 3108   class class class wbr 4442    X. cxp 4992   dom cdm 4994   omcom 6673    ~~ cen 7505    ~<_ cdom 7506   cardccrd 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-ac2 8834
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-oi 7926  df-card 8311  df-ac 8488
This theorem is referenced by:  unirnfdomd  8933  inar1  9144
  Copyright terms: Public domain W3C validator