MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm Structured version   Unicode version

Theorem infxpidm 8829
Description: The Cartesian product of an infinite set with itself is idempotent. This theorem (which is an AC equivalent) provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This proof follows as a corollary of infxpen 8284. (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
infxpidm  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)

Proof of Theorem infxpidm
StepHypRef Expression
1 reldom 7418 . . . 4  |-  Rel  ~<_
21brrelex2i 4980 . . 3  |-  ( om  ~<_  A  ->  A  e.  _V )
3 numth3 8742 . . 3  |-  ( A  e.  _V  ->  A  e.  dom  card )
42, 3syl 16 . 2  |-  ( om  ~<_  A  ->  A  e.  dom  card )
5 infxpidm2 8286 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
64, 5mpancom 669 1  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758   _Vcvv 3070   class class class wbr 4392    X. cxp 4938   dom cdm 4940   omcom 6578    ~~ cen 7409    ~<_ cdom 7410   cardccrd 8208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-ac2 8735
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-oi 7827  df-card 8212  df-ac 8389
This theorem is referenced by:  unirnfdomd  8834  inar1  9045
  Copyright terms: Public domain W3C validator