MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Unicode version

Theorem infxpenc2 8399
Description: Existence form of infxpenc 8395. A "uniform" or "canonical" version of infxpen 8392, asserting the existence of a single function  g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Distinct variable group:    g, b, A

Proof of Theorem infxpenc2
Dummy variables  f  n  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 8150 . 2  |-  ( A  e.  On  ->  E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) ) )
2 df-2o 7131 . . . . . . . 8  |-  2o  =  suc  1o
32oveq2i 6295 . . . . . . 7  |-  ( om 
^o  2o )  =  ( om  ^o  suc  1o )
4 omelon 8063 . . . . . . . 8  |-  om  e.  On
5 1on 7137 . . . . . . . 8  |-  1o  e.  On
6 oesuc 7177 . . . . . . . 8  |-  ( ( om  e.  On  /\  1o  e.  On )  -> 
( om  ^o  suc  1o )  =  ( ( om  ^o  1o )  .o  om ) )
74, 5, 6mp2an 672 . . . . . . 7  |-  ( om 
^o  suc  1o )  =  ( ( om 
^o  1o )  .o 
om )
8 oe1 7193 . . . . . . . . 9  |-  ( om  e.  On  ->  ( om  ^o  1o )  =  om )
94, 8ax-mp 5 . . . . . . . 8  |-  ( om 
^o  1o )  =  om
109oveq1i 6294 . . . . . . 7  |-  ( ( om  ^o  1o )  .o  om )  =  ( om  .o  om )
113, 7, 103eqtri 2500 . . . . . 6  |-  ( om 
^o  2o )  =  ( om  .o  om )
12 omxpen 7619 . . . . . . 7  |-  ( ( om  e.  On  /\  om  e.  On )  -> 
( om  .o  om )  ~~  ( om  X.  om ) )
134, 4, 12mp2an 672 . . . . . 6  |-  ( om 
.o  om )  ~~  ( om  X.  om )
1411, 13eqbrtri 4466 . . . . 5  |-  ( om 
^o  2o )  ~~  ( om  X.  om )
15 xpomen 8393 . . . . 5  |-  ( om 
X.  om )  ~~  om
1614, 15entri 7569 . . . 4  |-  ( om 
^o  2o )  ~~  om
1716a1i 11 . . 3  |-  ( A  e.  On  ->  ( om  ^o  2o )  ~~  om )
18 bren 7525 . . 3  |-  ( ( om  ^o  2o ) 
~~  om  <->  E. f  f : ( om  ^o  2o )
-1-1-onto-> om )
1917, 18sylib 196 . 2  |-  ( A  e.  On  ->  E. f 
f : ( om 
^o  2o ) -1-1-onto-> om )
20 eeanv 1957 . . 3  |-  ( E. n E. f ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  <->  ( E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  E. f  f : ( om  ^o  2o ) -1-1-onto-> om ) )
21 simpl 457 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A  e.  On )
22 simprl 755 . . . . . . 7  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) ) )
23 sseq2 3526 . . . . . . . . 9  |-  ( x  =  b  ->  ( om  C_  x  <->  om  C_  b
) )
24 oveq2 6292 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( om  ^o  y )  =  ( om  ^o  w
) )
25 f1oeq3 5809 . . . . . . . . . . . 12  |-  ( ( om  ^o  y )  =  ( om  ^o  w )  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  y )  <->  ( n `  x ) : x -1-1-onto-> ( om  ^o  w ) ) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  y )  <->  ( n `  x ) : x -1-1-onto-> ( om  ^o  w ) ) )
2726cbvrexv 3089 . . . . . . . . . 10  |-  ( E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
)  <->  E. w  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  w ) )
28 fveq2 5866 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
n `  x )  =  ( n `  b ) )
29 f1oeq1 5807 . . . . . . . . . . . . 13  |-  ( ( n `  x )  =  ( n `  b )  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : x -1-1-onto-> ( om  ^o  w ) ) )
3028, 29syl 16 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : x -1-1-onto-> ( om  ^o  w ) ) )
31 f1oeq2 5808 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( n `  b
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
3230, 31bitrd 253 . . . . . . . . . . 11  |-  ( x  =  b  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
3332rexbidv 2973 . . . . . . . . . 10  |-  ( x  =  b  ->  ( E. w  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  w
)  <->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
3427, 33syl5bb 257 . . . . . . . . 9  |-  ( x  =  b  ->  ( E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
)  <->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
3523, 34imbi12d 320 . . . . . . . 8  |-  ( x  =  b  ->  (
( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  y ) )  <-> 
( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) ) )
3635cbvralv 3088 . . . . . . 7  |-  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y ) )  <->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
3722, 36sylib 196 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
38 oveq2 6292 . . . . . . . . 9  |-  ( b  =  z  ->  ( om  ^o  b )  =  ( om  ^o  z
) )
3938cbvmptv 4538 . . . . . . . 8  |-  ( b  e.  ( On  \  1o )  |->  ( om 
^o  b ) )  =  ( z  e.  ( On  \  1o )  |->  ( om  ^o  z ) )
4039cnveqi 5177 . . . . . . 7  |-  `' ( b  e.  ( On 
\  1o )  |->  ( om  ^o  b ) )  =  `' ( z  e.  ( On 
\  1o )  |->  ( om  ^o  z ) )
4140fveq1i 5867 . . . . . 6  |-  ( `' ( b  e.  ( On  \  1o ) 
|->  ( om  ^o  b
) ) `  ran  ( n `  b
) )  =  ( `' ( z  e.  ( On  \  1o )  |->  ( om  ^o  z ) ) `  ran  ( n `  b
) )
42 2on 7138 . . . . . . . . . 10  |-  2o  e.  On
43 peano1 6703 . . . . . . . . . . 11  |-  (/)  e.  om
44 oen0 7235 . . . . . . . . . . 11  |-  ( ( ( om  e.  On  /\  2o  e.  On )  /\  (/)  e.  om )  -> 
(/)  e.  ( om  ^o  2o ) )
4543, 44mpan2 671 . . . . . . . . . 10  |-  ( ( om  e.  On  /\  2o  e.  On )  ->  (/) 
e.  ( om  ^o  2o ) )
464, 42, 45mp2an 672 . . . . . . . . 9  |-  (/)  e.  ( om  ^o  2o )
47 eqid 2467 . . . . . . . . . 10  |-  ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) )  =  ( f  o.  (
(  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) )
4847fveqf1o 6193 . . . . . . . . 9  |-  ( ( f : ( om 
^o  2o ) -1-1-onto-> om  /\  (/) 
e.  ( om  ^o  2o )  /\  (/)  e.  om )  ->  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
4946, 43, 48mp3an23 1316 . . . . . . . 8  |-  ( f : ( om  ^o  2o ) -1-1-onto-> om  ->  ( (
f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
5049ad2antll 728 . . . . . . 7  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( ( f  o.  ( (  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
5150simpld 459 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( f  o.  (
(  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om )
5250simprd 463 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( ( f  o.  ( (  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) )
5321, 37, 41, 51, 52infxpenc2lem3 8398 . . . . 5  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
5453ex 434 . . . 4  |-  ( A  e.  On  ->  (
( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  y ) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
5554exlimdvv 1701 . . 3  |-  ( A  e.  On  ->  ( E. n E. f ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
5620, 55syl5bir 218 . 2  |-  ( A  e.  On  ->  (
( E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y ) )  /\  E. f 
f : ( om 
^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
571, 19, 56mp2and 679 1  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   E.wrex 2815    \ cdif 3473    u. cun 3474    C_ wss 3476   (/)c0 3785   {cpr 4029   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    _I cid 4790   Oncon0 4878   suc csuc 4880    X. cxp 4997   `'ccnv 4998   ran crn 5000    |` cres 5001    o. ccom 5003   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   omcom 6684   1oc1o 7123   2oc2o 7124    .o comu 7128    ^o coe 7129    ~~ cen 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-seqom 7113  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-oexp 7136  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-cnf 8079  df-card 8320
This theorem is referenced by:  pwfseq  9042
  Copyright terms: Public domain W3C validator