MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Unicode version

Theorem infxpen 8181
Description: Every infinite ordinal is equinumerous to its Cartesian product. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation  R is a well-ordering of  ( On  X.  On ) with the additional property that  R-initial segments of  ( x  X.  x ) (where  x is a limit ordinal) are of cardinality at most  x. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )

Proof of Theorem infxpen
Dummy variables  m  a  s  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) }
2 eleq1 2503 . . . . 5  |-  ( s  =  z  ->  (
s  e.  ( On 
X.  On )  <->  z  e.  ( On  X.  On ) ) )
3 eleq1 2503 . . . . 5  |-  ( t  =  w  ->  (
t  e.  ( On 
X.  On )  <->  w  e.  ( On  X.  On ) ) )
42, 3bi2anan9 868 . . . 4  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  <->  ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) ) ) )
5 fveq2 5691 . . . . . . . 8  |-  ( s  =  z  ->  ( 1st `  s )  =  ( 1st `  z
) )
6 fveq2 5691 . . . . . . . 8  |-  ( s  =  z  ->  ( 2nd `  s )  =  ( 2nd `  z
) )
75, 6uneq12d 3511 . . . . . . 7  |-  ( s  =  z  ->  (
( 1st `  s
)  u.  ( 2nd `  s ) )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
87adantr 465 . . . . . 6  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( 1st `  s
)  u.  ( 2nd `  s ) )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
9 fveq2 5691 . . . . . . . 8  |-  ( t  =  w  ->  ( 1st `  t )  =  ( 1st `  w
) )
10 fveq2 5691 . . . . . . . 8  |-  ( t  =  w  ->  ( 2nd `  t )  =  ( 2nd `  w
) )
119, 10uneq12d 3511 . . . . . . 7  |-  ( t  =  w  ->  (
( 1st `  t
)  u.  ( 2nd `  t ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
1211adantl 466 . . . . . 6  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
138, 12eleq12d 2511 . . . . 5  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t )  u.  ( 2nd `  t ) )  <-> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
147, 11eqeqan12d 2458 . . . . . 6  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  <-> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
15 breq12 4297 . . . . . 6  |-  ( ( s  =  z  /\  t  =  w )  ->  ( s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t  <->  z { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } w ) )
1614, 15anbi12d 710 . . . . 5  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( ( ( 1st `  s )  u.  ( 2nd `  s
) )  =  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  /\  s { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) } t )  <->  ( (
( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) } w ) ) )
1713, 16orbi12d 709 . . . 4  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( ( ( 1st `  s )  u.  ( 2nd `  s
) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) )  <->  ( (
( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } w ) ) ) )
184, 17anbi12d 710 . . 3  |-  ( ( s  =  z  /\  t  =  w )  ->  ( ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  /\  (
( ( 1st `  s
)  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) ) )  <-> 
( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } w ) ) ) ) )
1918cbvopabv 4361 . 2  |-  { <. s ,  t >.  |  ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  s
)  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) ) ) }  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } w ) ) ) }
20 eqid 2443 . 2  |-  ( {
<. s ,  t >.  |  ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  /\  (
( ( 1st `  s
)  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) ) ) }  i^i  ( ( a  X.  a )  X.  ( a  X.  a ) ) )  =  ( { <. s ,  t >.  |  ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  s
)  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) ) ) }  i^i  ( ( a  X.  a )  X.  ( a  X.  a ) ) )
21 biid 236 . 2  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  <->  ( (
a  e.  On  /\  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m ) 
~~  m ) )  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a )
) )
22 eqid 2443 . 2  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
23 eqid 2443 . 2  |- OrdIso ( ( { <. s ,  t
>.  |  ( (
s  e.  ( On 
X.  On )  /\  t  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t )  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s
) )  =  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  /\  s { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) } t ) ) ) }  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) ) ,  ( a  X.  a ) )  = OrdIso ( ( {
<. s ,  t >.  |  ( ( s  e.  ( On  X.  On )  /\  t  e.  ( On  X.  On ) )  /\  (
( ( 1st `  s
)  u.  ( 2nd `  s ) )  e.  ( ( 1st `  t
)  u.  ( 2nd `  t ) )  \/  ( ( ( 1st `  s )  u.  ( 2nd `  s ) )  =  ( ( 1st `  t )  u.  ( 2nd `  t ) )  /\  s { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) ) } t ) ) ) }  i^i  ( ( a  X.  a )  X.  ( a  X.  a ) ) ) ,  ( a  X.  a ) )
241, 19, 20, 21, 22, 23infxpenlem 8180 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715    u. cun 3326    i^i cin 3327    C_ wss 3328   class class class wbr 4292   {copab 4349   Oncon0 4719    X. cxp 4838   ` cfv 5418   omcom 6476   1stc1st 6575   2ndc2nd 6576    ~~ cen 7307    ~< csdm 7309  OrdIsocoi 7723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-oi 7724  df-card 8109
This theorem is referenced by:  xpomen  8182  infxpidm2  8183  alephreg  8746  cfpwsdom  8748  inar1  8942
  Copyright terms: Public domain W3C validator