MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpn2 Structured version   Visualization version   Unicode version

Theorem infpn2 14936
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 14935, so by unben 14932 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpn2.1 . . 3  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2 ssrab2 3500 . . 3  |-  { n  e.  NN  |  ( 1  <  n  /\  A. m  e.  NN  (
( n  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }  C_  NN
31, 2eqsstri 3448 . 2  |-  S  C_  NN
4 infpn 14935 . . . . 5  |-  ( j  e.  NN  ->  E. k  e.  NN  ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )
5 nnge1 10657 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  1  <_  j )
65adantr 472 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  1  <_  j )
7 nnre 10638 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  RR )
8 nnre 10638 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR )
9 1re 9660 . . . . . . . . . . . 12  |-  1  e.  RR
10 lelttr 9742 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  (
( 1  <_  j  /\  j  <  k )  ->  1  <  k
) )
119, 10mp3an1 1377 . . . . . . . . . . 11  |-  ( ( j  e.  RR  /\  k  e.  RR )  ->  ( ( 1  <_ 
j  /\  j  <  k )  ->  1  <  k ) )
127, 8, 11syl2an 485 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( 1  <_ 
j  /\  j  <  k )  ->  1  <  k ) )
136, 12mpand 689 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( j  <  k  ->  1  <  k ) )
1413ancld 562 . . . . . . . 8  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( j  <  k  ->  ( j  <  k  /\  1  <  k ) ) )
1514anim1d 574 . . . . . . 7  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  ( (
j  <  k  /\  1  <  k )  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
16 anass 661 . . . . . . 7  |-  ( ( ( j  <  k  /\  1  <  k )  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  <->  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
1715, 16syl6ib 234 . . . . . 6  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
1817reximdva 2858 . . . . 5  |-  ( j  e.  NN  ->  ( E. k  e.  NN  ( j  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  E. k  e.  NN  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
194, 18mpd 15 . . . 4  |-  ( j  e.  NN  ->  E. k  e.  NN  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
20 breq2 4399 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  <  n  <->  1  <  k ) )
21 oveq1 6315 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
n  /  m )  =  ( k  /  m ) )
2221eleq1d 2533 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( n  /  m
)  e.  NN  <->  ( k  /  m )  e.  NN ) )
23 equequ2 1876 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
m  =  n  <->  m  =  k ) )
2423orbi2d 716 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  k ) ) )
2522, 24imbi12d 327 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
k  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  k ) ) ) )
2625ralbidv 2829 . . . . . . . . 9  |-  ( n  =  k  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )
2720, 26anbi12d 725 . . . . . . . 8  |-  ( n  =  k  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
2827, 1elrab2 3186 . . . . . . 7  |-  ( k  e.  S  <->  ( k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
2928anbi1i 709 . . . . . 6  |-  ( ( k  e.  S  /\  j  <  k )  <->  ( (
k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )  /\  j  <  k
) )
30 anass 661 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )  /\  j  <  k
)  <->  ( k  e.  NN  /\  ( ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  <  k ) ) )
31 ancom 457 . . . . . . 7  |-  ( ( ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  <  k )  <->  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
3231anbi2i 708 . . . . . 6  |-  ( ( k  e.  NN  /\  ( ( 1  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  < 
k ) )  <->  ( k  e.  NN  /\  ( j  <  k  /\  (
1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
3329, 30, 323bitri 279 . . . . 5  |-  ( ( k  e.  S  /\  j  <  k )  <->  ( k  e.  NN  /\  ( j  <  k  /\  (
1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
3433rexbii2 2879 . . . 4  |-  ( E. k  e.  S  j  <  k  <->  E. k  e.  NN  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
3519, 34sylibr 217 . . 3  |-  ( j  e.  NN  ->  E. k  e.  S  j  <  k )
3635rgen 2766 . 2  |-  A. j  e.  NN  E. k  e.  S  j  <  k
37 unben 14932 . 2  |-  ( ( S  C_  NN  /\  A. j  e.  NN  E. k  e.  S  j  <  k )  ->  S  ~~  NN )
383, 36, 37mp2an 686 1  |-  S  ~~  NN
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760    C_ wss 3390   class class class wbr 4395  (class class class)co 6308    ~~ cen 7584   RRcr 9556   1c1 9558    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-seq 12252  df-fac 12498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator