MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmxrgelb Structured version   Unicode version

Theorem infmxrgelb 11515
Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
infmxrgelb  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  A. x  e.  A  B  <_  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmxrgelb
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11336 . . . . . . . 8  |-  <  Or  RR*
2 cnvso 5537 . . . . . . . 8  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
31, 2mpbi 208 . . . . . . 7  |-  `'  <  Or 
RR*
43a1i 11 . . . . . 6  |-  ( A 
C_  RR*  ->  `'  <  Or 
RR* )
5 xrinfmss2 11491 . . . . . 6  |-  ( A 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  A  -.  y `'  <  z  /\  A. z  e.  RR*  ( z `'  <  y  ->  E. x  e.  A  z `'  <  x ) ) )
6 id 22 . . . . . 6  |-  ( A 
C_  RR*  ->  A  C_  RR* )
74, 5, 6suplub2 7910 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  E. x  e.  A  B `'  <  x ) )
8 simpr 461 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
93supex 7912 . . . . . 6  |-  sup ( A ,  RR* ,  `'  <  )  e.  _V
10 brcnvg 5174 . . . . . 6  |-  ( ( B  e.  RR*  /\  sup ( A ,  RR* ,  `'  <  )  e.  _V )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  sup ( A ,  RR* ,  `'  <  )  <  B ) )
118, 9, 10sylancl 662 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  sup ( A ,  RR* ,  `'  <  )  <  B ) )
12 vex 3109 . . . . . . 7  |-  x  e. 
_V
13 brcnvg 5174 . . . . . . 7  |-  ( ( B  e.  RR*  /\  x  e.  _V )  ->  ( B `'  <  x  <->  x  <  B ) )
148, 12, 13sylancl 662 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  x  <->  x  <  B ) )
1514rexbidv 2966 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  A  B `'  <  x  <->  E. x  e.  A  x  <  B ) )
167, 11, 153bitr3d 283 . . . 4  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  `'  <  )  <  B  <->  E. x  e.  A  x  <  B ) )
1716notbid 294 . . 3  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  sup ( A ,  RR* ,  `'  <  )  <  B  <->  -.  E. x  e.  A  x  <  B ) )
18 ralnex 2903 . . 3  |-  ( A. x  e.  A  -.  x  <  B  <->  -.  E. x  e.  A  x  <  B )
1917, 18syl6bbr 263 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  sup ( A ,  RR* ,  `'  <  )  <  B  <->  A. x  e.  A  -.  x  <  B ) )
20 id 22 . . 3  |-  ( B  e.  RR*  ->  B  e. 
RR* )
21 infmxrcl 11497 . . 3  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  `'  <  )  e.  RR* )
22 xrlenlt 9641 . . 3  |-  ( ( B  e.  RR*  /\  sup ( A ,  RR* ,  `'  <  )  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  -.  sup ( A ,  RR* ,  `'  <  )  <  B ) )
2320, 21, 22syl2anr 478 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  -. 
sup ( A ,  RR* ,  `'  <  )  <  B ) )
24 simplr 754 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  B  e.  RR* )
25 simpl 457 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  A  C_ 
RR* )
2625sselda 3497 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  x  e.  RR* )
27 xrlenlt 9641 . . . 4  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
2824, 26, 27syl2anc 661 . . 3  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  ( B  <_  x  <->  -.  x  <  B ) )
2928ralbidva 2893 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e.  A  B  <_  x  <->  A. x  e.  A  -.  x  <  B ) )
3019, 23, 293bitr4d 285 1  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  A. x  e.  A  B  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1762   A.wral 2807   E.wrex 2808   _Vcvv 3106    C_ wss 3469   class class class wbr 4440    Or wor 4792   `'ccnv 4991   supcsup 7889   RR*cxr 9616    < clt 9617    <_ cle 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797
This theorem is referenced by:  infmxrre  11516  ixxlb  11540  limsuple  13250  limsupval2  13252  imasdsf1olem  20604  nmogelb  20951  metdsf  21080  metdsge  21081  ovolgelb  21619  ovolge0  21620  ovolsslem  21623  ovolicc2  21661  ismblfin  29619  infmxrss  31024
  Copyright terms: Public domain W3C validator