MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmsupOLD Structured version   Visualization version   Unicode version

Theorem infmsupOLD 10619
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals  A is the negative of the supremum of the negatives of its elements. The antecedent ensures that  A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) Obsolete version of infrenegsup 10618 as of 4-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
infmsupOLD  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Distinct variable group:    x, A, y, z

Proof of Theorem infmsupOLD
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 gtso 9740 . . . . . 6  |-  `'  <  Or  RR
21a1i 11 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  `'  <  Or  RR )
3 infm3 10595 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
4 vex 3059 . . . . . . . . . . 11  |-  x  e. 
_V
5 vex 3059 . . . . . . . . . . 11  |-  y  e. 
_V
64, 5brcnv 5035 . . . . . . . . . 10  |-  ( x `'  <  y  <->  y  <  x )
76notbii 302 . . . . . . . . 9  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
87ralbii 2830 . . . . . . . 8  |-  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  -.  y  <  x )
95, 4brcnv 5035 . . . . . . . . . 10  |-  ( y `'  <  x  <->  x  <  y )
10 vex 3059 . . . . . . . . . . . 12  |-  w  e. 
_V
115, 10brcnv 5035 . . . . . . . . . . 11  |-  ( y `'  <  w  <->  w  <  y )
1211rexbii 2900 . . . . . . . . . 10  |-  ( E. w  e.  A  y `'  <  w  <->  E. w  e.  A  w  <  y )
139, 12imbi12i 332 . . . . . . . . 9  |-  ( ( y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <-> 
( x  <  y  ->  E. w  e.  A  w  <  y ) )
1413ralbii 2830 . . . . . . . 8  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <->  A. y  e.  RR  ( x  <  y  ->  E. w  e.  A  w  <  y ) )
158, 14anbi12i 708 . . . . . . 7  |-  ( ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
1615rexbii 2900 . . . . . 6  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  A  w  <  y ) ) )
173, 16sylibr 217 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w ) ) )
182, 17supcl 7997 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
1918recnd 9694 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  CC )
2019negnegd 10002 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -u sup ( A ,  RR ,  `'  <  )  =  sup ( A ,  RR ,  `'  <  ) )
21 eqid 2461 . . . . . . . 8  |-  ( z  e.  RR  |->  -u z
)  =  ( z  e.  RR  |->  -u z
)
2221mptpreima 5346 . . . . . . 7  |-  ( `' ( z  e.  RR  |->  -u z ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
2321negiso 10614 . . . . . . . . 9  |-  ( ( z  e.  RR  |->  -u z )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z ) )
2423simpri 468 . . . . . . . 8  |-  `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z )
2524imaeq1i 5183 . . . . . . 7  |-  ( `' ( z  e.  RR  |->  -u z ) " A
)  =  ( ( z  e.  RR  |->  -u z ) " A
)
2622, 25eqtr3i 2485 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( z  e.  RR  |->  -u z
) " A )
2726supeq1i 7986 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( z  e.  RR  |->  -u z ) " A ) ,  RR ,  <  )
2823simpli 464 . . . . . . . . 9  |-  ( z  e.  RR  |->  -u z
)  Isom  <  ,  `'  <  ( RR ,  RR )
29 isocnv 6245 . . . . . . . . 9  |-  ( ( z  e.  RR  |->  -u z )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR ) )
3028, 29ax-mp 5 . . . . . . . 8  |-  `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
31 isoeq1 6234 . . . . . . . . 9  |-  ( `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z )  ->  ( `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
3224, 31ax-mp 5 . . . . . . . 8  |-  ( `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
)
3330, 32mpbi 213 . . . . . . 7  |-  ( z  e.  RR  |->  -u z
)  Isom  `'  <  ,  <  ( RR ,  RR )
3433a1i 11 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
)
35 simp1 1014 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  A  C_  RR )
3634, 35, 17, 2supiso 8016 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup (
( ( z  e.  RR  |->  -u z ) " A ) ,  RR ,  <  )  =  ( ( z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) ) )
3727, 36syl5eq 2507 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) ) )
38 negeq 9892 . . . . . 6  |-  ( z  =  sup ( A ,  RR ,  `'  <  )  ->  -u z  = 
-u sup ( A ,  RR ,  `'  <  ) )
39 negex 9898 . . . . . 6  |-  -u sup ( A ,  RR ,  `'  <  )  e.  _V
4038, 21, 39fvmpt 5970 . . . . 5  |-  ( sup ( A ,  RR ,  `'  <  )  e.  RR  ->  ( (
z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-u sup ( A ,  RR ,  `'  <  ) )
4118, 40syl 17 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( (
z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-u sup ( A ,  RR ,  `'  <  ) )
4237, 41eqtr2d 2496 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u sup ( A ,  RR ,  `'  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
4342negeqd 9894 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -u sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
4420, 43eqtr3d 2497 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   {crab 2752    C_ wss 3415   (/)c0 3742   class class class wbr 4415    |-> cmpt 4474    Or wor 4772   `'ccnv 4851   "cima 4855   ` cfv 5600    Isom wiso 5601   supcsup 7979   RRcr 9563    < clt 9700    <_ cle 9701   -ucneg 9886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-po 4773  df-so 4774  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-sup 7981  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888
This theorem is referenced by:  infmrclOLD  10620  supminfOLD  11279  mbfinfOLD  22670
  Copyright terms: Public domain W3C validator