MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmssuzle Unicode version

Theorem infmssuzle 10514
Description: The infimum of a subset of a set of upper integers is less than or equal to all members of the subset. Note that the " `'  < " argument turns supremum into infimum (for which we do not currently have a separate notation). (Contributed by NM, 11-Oct-2005.)
Assertion
Ref Expression
infmssuzle  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)

Proof of Theorem infmssuzle
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 3594 . . 3  |-  ( A  e.  S  ->  S  =/=  (/) )
2 uzwo 10495 . . 3  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
31, 2sylan2 461 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
4 uzssz 10461 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
5 zssre 10245 . . . . 5  |-  ZZ  C_  RR
64, 5sstri 3317 . . . 4  |-  ( ZZ>= `  M )  C_  RR
7 sstr 3316 . . . 4  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  RR )  ->  S  C_  RR )
86, 7mpan2 653 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  RR )
9 lbinfmle 9919 . . . 4  |-  ( ( S  C_  RR  /\  E. j  e.  S  A. k  e.  S  j  <_  k  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
1093com23 1159 . . 3  |-  ( ( S  C_  RR  /\  A  e.  S  /\  E. j  e.  S  A. k  e.  S  j  <_  k )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
118, 10syl3an1 1217 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S  /\  E. j  e.  S  A. k  e.  S  j  <_  k )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
123, 11mpd3an3 1280 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   (/)c0 3588   class class class wbr 4172   `'ccnv 4836   ` cfv 5413   supcsup 7403   RRcr 8945    < clt 9076    <_ cle 9077   ZZcz 10238   ZZ>=cuz 10444
This theorem is referenced by:  zsupss  10521  uzwo3  10525  divalglem5  12872  bitsfzolem  12901  bezoutlem3  12995  odzdvds  13136  4sqlem13  13280  4sqlem17  13284  ramcl2lem  13332  ramtub  13335  odlem2  15132  gexlem2  15171  zlpirlem3  16725  ovolicc2lem4  19369  iundisj  19395  ig1peu  20047  ig1pdvds  20052  ftalem5  20812  iundisjf  23982  iundisjfi  24105  dgraaub  27221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445
  Copyright terms: Public domain W3C validator