MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmssuzle Structured version   Unicode version

Theorem infmssuzle 10925
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. Note that the " `'  < " argument turns supremum into infimum (for which we do not currently have a separate notation). (Contributed by NM, 11-Oct-2005.)
Assertion
Ref Expression
infmssuzle  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)

Proof of Theorem infmssuzle
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 3631 . . 3  |-  ( A  e.  S  ->  S  =/=  (/) )
2 uzwo 10905 . . 3  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
31, 2sylan2 471 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
4 uzssz 10868 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
5 zssre 10641 . . . . 5  |-  ZZ  C_  RR
64, 5sstri 3353 . . . 4  |-  ( ZZ>= `  M )  C_  RR
7 sstr 3352 . . . 4  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  RR )  ->  S  C_  RR )
86, 7mpan2 664 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  RR )
9 lbinfmle 10273 . . . 4  |-  ( ( S  C_  RR  /\  E. j  e.  S  A. k  e.  S  j  <_  k  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
1093com23 1186 . . 3  |-  ( ( S  C_  RR  /\  A  e.  S  /\  E. j  e.  S  A. k  e.  S  j  <_  k )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
118, 10syl3an1 1244 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S  /\  E. j  e.  S  A. k  e.  S  j  <_  k )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
123, 11mpd3an3 1308 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706    C_ wss 3316   (/)c0 3625   class class class wbr 4280   `'ccnv 4826   ` cfv 5406   supcsup 7678   RRcr 9269    < clt 9406    <_ cle 9407   ZZcz 10634   ZZ>=cuz 10849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-n0 10568  df-z 10635  df-uz 10850
This theorem is referenced by:  zsupss  10932  uzwo3  10936  divalglem5  13584  bitsfzolem  13613  bezoutlem3  13707  odzdvds  13850  4sqlem13  14001  4sqlem17  14005  ramcl2lem  14053  ramtub  14056  odlem2  16022  gexlem2  16061  zringlpirlem3  17747  zlpirlem3  17752  ovolicc2lem4  20845  iundisj  20871  ig1peu  21528  ig1pdvds  21533  ftalem5  22299  iundisjf  25755  iundisjfi  25903  dgraaub  29350
  Copyright terms: Public domain W3C validator