MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmrgelb Structured version   Unicode version

Theorem infmrgelb 10533
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
infmrgelb  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. z  e.  A  B  <_  z ) )
Distinct variable groups:    x, y, A    z, A    z, B
Allowed substitution hints:    B( x, y)

Proof of Theorem infmrgelb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 gtso 9676 . . . . . . 7  |-  `'  <  Or  RR
21a1i 11 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  `'  <  Or  RR )
3 infm3 10512 . . . . . . 7  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
4 vex 3121 . . . . . . . . . . . 12  |-  x  e. 
_V
5 vex 3121 . . . . . . . . . . . 12  |-  y  e. 
_V
64, 5brcnv 5190 . . . . . . . . . . 11  |-  ( x `'  <  y  <->  y  <  x )
76notbii 296 . . . . . . . . . 10  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
87ralbii 2898 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  -.  y  <  x )
95, 4brcnv 5190 . . . . . . . . . . 11  |-  ( y `'  <  x  <->  x  <  y )
10 vex 3121 . . . . . . . . . . . . 13  |-  w  e. 
_V
115, 10brcnv 5190 . . . . . . . . . . . 12  |-  ( y `'  <  w  <->  w  <  y )
1211rexbii 2969 . . . . . . . . . . 11  |-  ( E. w  e.  A  y `'  <  w  <->  E. w  e.  A  w  <  y )
139, 12imbi12i 326 . . . . . . . . . 10  |-  ( ( y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <-> 
( x  <  y  ->  E. w  e.  A  w  <  y ) )
1413ralbii 2898 . . . . . . . . 9  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <->  A. y  e.  RR  ( x  <  y  ->  E. w  e.  A  w  <  y ) )
158, 14anbi12i 697 . . . . . . . 8  |-  ( ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
1615rexbii 2969 . . . . . . 7  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  A  w  <  y ) ) )
173, 16sylibr 212 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w ) ) )
18 simp1 996 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  A  C_  RR )
192, 17, 18suplub2 7931 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B `'  <  sup ( A ,  RR ,  `'  <  )  <->  E. w  e.  A  B `'  <  w ) )
2019notbid 294 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  -.  E. w  e.  A  B `'  <  w ) )
21 ralnex 2913 . . . 4  |-  ( A. w  e.  A  -.  B `'  <  w  <->  -.  E. w  e.  A  B `'  <  w )
2220, 21syl6bbr 263 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  A. w  e.  A  -.  B `'  <  w ) )
23 simpr 461 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  B  e.  RR )
24 infmrcl 10532 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
2524adantr 465 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
26 lenlt 9673 . . . . 5  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  sup ( A ,  RR ,  `'  <  )  <  B ) )
27 brcnvg 5188 . . . . . 6  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B `'  <  sup ( A ,  RR ,  `'  <  )  <->  sup ( A ,  RR ,  `'  <  )  <  B
) )
2827notbid 294 . . . . 5  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  -.  sup ( A ,  RR ,  `'  <  )  <  B
) )
2926, 28bitr4d 256 . . . 4  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  B `'  <  sup ( A ,  RR ,  `'  <  ) ) )
3023, 25, 29syl2anc 661 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  B `'  <  sup ( A ,  RR ,  `'  <  ) ) )
3123adantr 465 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  B  e.  RR )
32 simpl1 999 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  A  C_  RR )
3332sselda 3509 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  w  e.  RR )
34 lenlt 9673 . . . . . 6  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B  <_  w  <->  -.  w  <  B ) )
35 brcnvg 5188 . . . . . . 7  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B `'  <  w  <-> 
w  <  B )
)
3635notbid 294 . . . . . 6  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( -.  B `'  <  w  <->  -.  w  <  B ) )
3734, 36bitr4d 256 . . . . 5  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B  <_  w  <->  -.  B `'  <  w
) )
3831, 33, 37syl2anc 661 . . . 4  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  ( B  <_  w  <->  -.  B `'  <  w ) )
3938ralbidva 2903 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( A. w  e.  A  B  <_  w  <->  A. w  e.  A  -.  B `'  <  w ) )
4022, 30, 393bitr4d 285 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. w  e.  A  B  <_  w ) )
41 breq2 4456 . . 3  |-  ( w  =  z  ->  ( B  <_  w  <->  B  <_  z ) )
4241cbvralv 3093 . 2  |-  ( A. w  e.  A  B  <_  w  <->  A. z  e.  A  B  <_  z )
4340, 42syl6bb 261 1  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. z  e.  A  B  <_  z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   class class class wbr 4452    Or wor 4804   `'ccnv 5003   supcsup 7910   RRcr 9501    < clt 9638    <_ cle 9639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579  ax-pre-sup 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-sup 7911  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818
This theorem is referenced by:  infmxrre  11537  minveclem2  21686  minveclem3b  21688  minveclem4  21692  minveclem6  21694  pilem2  22691  pilem3  22692  pntlem3  23637  minvecolem2  25582  minvecolem4  25587  minvecolem5  25588  minvecolem6  25589  infmrgelbi  30710  taupi  37062
  Copyright terms: Public domain W3C validator