MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmrcl Structured version   Unicode version

Theorem infmrcl 10542
Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
infmrcl  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Distinct variable group:    x, y, A

Proof of Theorem infmrcl
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infmsup 10541 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  ) )
2 n0 3803 . . . . . 6  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
3 ssel 3493 . . . . . . . . . . 11  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  z  e.  RR ) )
4 renegcl 9901 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -u z  e.  RR )
53, 4syl6 33 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u z  e.  RR ) )
6 ssel2 3494 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
76recnd 9639 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  CC )
87negnegd 9941 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  =  z )
9 simpr 461 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  A )
108, 9eqeltrd 2545 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  e.  A )
1110ex 434 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u -u z  e.  A ) )
125, 11jcad 533 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  ( -u z  e.  RR  /\  -u -u z  e.  A
) ) )
13 negeq 9831 . . . . . . . . . . . 12  |-  ( v  =  -u z  ->  -u v  =  -u -u z )
1413eleq1d 2526 . . . . . . . . . . 11  |-  ( v  =  -u z  ->  ( -u v  e.  A  <->  -u -u z  e.  A ) )
1514elrab 3257 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( -u z  e.  RR  /\  -u -u z  e.  A ) )
16 ne0i 3799 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1715, 16sylbir 213 . . . . . . . . 9  |-  ( (
-u z  e.  RR  /\  -u -u z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1812, 17syl6 33 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
1918exlimdv 1725 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. z  z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
2019imp 429 . . . . . 6  |-  ( ( A  C_  RR  /\  E. z  z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
212, 20sylan2b 475 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
22213adant3 1016 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
23 renegcl 9901 . . . . . . 7  |-  ( x  e.  RR  ->  -u x  e.  RR )
24 negeq 9831 . . . . . . . . . . . 12  |-  ( v  =  w  ->  -u v  =  -u w )
2524eleq1d 2526 . . . . . . . . . . 11  |-  ( v  =  w  ->  ( -u v  e.  A  <->  -u w  e.  A ) )
2625elrab 3257 . . . . . . . . . 10  |-  ( w  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
27 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( y  =  -u w  ->  (
x  <_  y  <->  x  <_  -u w ) )
2827rspcva 3208 . . . . . . . . . . . . . 14  |-  ( (
-u w  e.  A  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
2928adantll 713 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  RR  /\  -u w  e.  A
)  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
3029adantll 713 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  x  <_ 
-u w )
31 lenegcon2 10078 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  <_  -u w  <->  w  <_  -u x ) )
3231adantrr 716 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3332adantr 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3430, 33mpbid 210 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  w  <_ 
-u x )
3534exp31 604 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
( w  e.  RR  /\  -u w  e.  A
)  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3626, 35syl5bi 217 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3736com23 78 . . . . . . . 8  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  w  <_  -u x ) ) )
3837ralrimdv 2873 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
39 breq2 4460 . . . . . . . . 9  |-  ( z  =  -u x  ->  (
w  <_  z  <->  w  <_  -u x ) )
4039ralbidv 2896 . . . . . . . 8  |-  ( z  =  -u x  ->  ( A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z  <->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
4140rspcev 3210 . . . . . . 7  |-  ( (
-u x  e.  RR  /\ 
A. w  e.  {
v  e.  RR  |  -u v  e.  A }
w  <_  -u x )  ->  E. z  e.  RR  A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z )
4223, 38, 41syl6an 545 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z ) )
4342rexlimiv 2943 . . . . 5  |-  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
44433ad2ant3 1019 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
45 ssrab2 3581 . . . . 5  |-  { v  e.  RR  |  -u v  e.  A }  C_  RR
46 suprcl 10523 . . . . 5  |-  ( ( { v  e.  RR  |  -u v  e.  A }  C_  RR  /\  {
v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4745, 46mp3an1 1311 . . . 4  |-  ( ( { v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4822, 44, 47syl2anc 661 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4948renegcld 10007 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
501, 49eqeltrd 2545 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811    C_ wss 3471   (/)c0 3793   class class class wbr 4456   `'ccnv 5007   supcsup 7918   RRcr 9508    < clt 9645    <_ cle 9646   -ucneg 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827
This theorem is referenced by:  infmrgelb  10543  infmrlb  10544  supminf  11194  infmxrre  11552  minveclem4c  21966  minveclem3b  21969  minveclem6  21975  pilem2  22973  pilem3  22974  pntlem3  23920  minvecolem2  25918  minvecolem3  25919  minvecolem4c  25922  minvecolem5  25924  minvecolem6  25925  heicant  30233  pellfundre  31000  infrglb  31766  climinf  31794  stirlinglem13  32050  taupi  37820
  Copyright terms: Public domain W3C validator