MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmrcl Structured version   Unicode version

Theorem infmrcl 10522
Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
infmrcl  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Distinct variable group:    x, y, A

Proof of Theorem infmrcl
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infmsup 10521 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  ) )
2 n0 3794 . . . . . 6  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
3 ssel 3498 . . . . . . . . . . 11  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  z  e.  RR ) )
4 renegcl 9882 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -u z  e.  RR )
53, 4syl6 33 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u z  e.  RR ) )
6 ssel2 3499 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
76recnd 9622 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  CC )
87negnegd 9921 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  =  z )
9 simpr 461 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  A )
108, 9eqeltrd 2555 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  e.  A )
1110ex 434 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u -u z  e.  A ) )
125, 11jcad 533 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  ( -u z  e.  RR  /\  -u -u z  e.  A
) ) )
13 negeq 9812 . . . . . . . . . . . 12  |-  ( v  =  -u z  ->  -u v  =  -u -u z )
1413eleq1d 2536 . . . . . . . . . . 11  |-  ( v  =  -u z  ->  ( -u v  e.  A  <->  -u -u z  e.  A ) )
1514elrab 3261 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( -u z  e.  RR  /\  -u -u z  e.  A ) )
16 ne0i 3791 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1715, 16sylbir 213 . . . . . . . . 9  |-  ( (
-u z  e.  RR  /\  -u -u z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1812, 17syl6 33 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
1918exlimdv 1700 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. z  z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
2019imp 429 . . . . . 6  |-  ( ( A  C_  RR  /\  E. z  z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
212, 20sylan2b 475 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
22213adant3 1016 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
23 renegcl 9882 . . . . . . 7  |-  ( x  e.  RR  ->  -u x  e.  RR )
24 negeq 9812 . . . . . . . . . . . 12  |-  ( v  =  w  ->  -u v  =  -u w )
2524eleq1d 2536 . . . . . . . . . . 11  |-  ( v  =  w  ->  ( -u v  e.  A  <->  -u w  e.  A ) )
2625elrab 3261 . . . . . . . . . 10  |-  ( w  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
27 breq2 4451 . . . . . . . . . . . . . . 15  |-  ( y  =  -u w  ->  (
x  <_  y  <->  x  <_  -u w ) )
2827rspcva 3212 . . . . . . . . . . . . . 14  |-  ( (
-u w  e.  A  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
2928adantll 713 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  RR  /\  -u w  e.  A
)  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
3029adantll 713 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  x  <_ 
-u w )
31 lenegcon2 10057 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  <_  -u w  <->  w  <_  -u x ) )
3231adantrr 716 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3332adantr 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3430, 33mpbid 210 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  w  <_ 
-u x )
3534exp31 604 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
( w  e.  RR  /\  -u w  e.  A
)  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3626, 35syl5bi 217 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3736com23 78 . . . . . . . 8  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  w  <_  -u x ) ) )
3837ralrimdv 2880 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
39 breq2 4451 . . . . . . . . 9  |-  ( z  =  -u x  ->  (
w  <_  z  <->  w  <_  -u x ) )
4039ralbidv 2903 . . . . . . . 8  |-  ( z  =  -u x  ->  ( A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z  <->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
4140rspcev 3214 . . . . . . 7  |-  ( (
-u x  e.  RR  /\ 
A. w  e.  {
v  e.  RR  |  -u v  e.  A }
w  <_  -u x )  ->  E. z  e.  RR  A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z )
4223, 38, 41syl6an 545 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z ) )
4342rexlimiv 2949 . . . . 5  |-  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
44433ad2ant3 1019 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
45 ssrab2 3585 . . . . 5  |-  { v  e.  RR  |  -u v  e.  A }  C_  RR
46 suprcl 10503 . . . . 5  |-  ( ( { v  e.  RR  |  -u v  e.  A }  C_  RR  /\  {
v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4745, 46mp3an1 1311 . . . 4  |-  ( ( { v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4822, 44, 47syl2anc 661 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4948renegcld 9986 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
501, 49eqeltrd 2555 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   class class class wbr 4447   `'ccnv 4998   supcsup 7900   RRcr 9491    < clt 9628    <_ cle 9629   -ucneg 9806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808
This theorem is referenced by:  infmrgelb  10523  infmrlb  10524  supminf  11169  infmxrre  11527  minveclem4c  21603  minveclem3b  21606  minveclem6  21612  pilem2  22609  pilem3  22610  pntlem3  23550  minvecolem2  25495  minvecolem3  25496  minvecolem4c  25499  minvecolem5  25501  minvecolem6  25502  heicant  29654  pellfundre  30449  infrglb  31168  climinf  31176  stirlinglem13  31414  taupi  36787
  Copyright terms: Public domain W3C validator