MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infil Unicode version

Theorem infil 17848
Description: The intersection of two filters is a filter. Use fiint 7342 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
infil  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  ( F  i^i  G )  e.  ( Fil `  X
) )

Proof of Theorem infil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3521 . . . 4  |-  ( F  i^i  G )  C_  F
2 filsspw 17836 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
32adantr 452 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  F  C_ 
~P X )
41, 3syl5ss 3319 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  ( F  i^i  G )  C_  ~P X )
5 0nelfil 17834 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  -.  (/)  e.  F
)
65adantr 452 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  F )
71sseli 3304 . . . 4  |-  ( (/)  e.  ( F  i^i  G
)  ->  (/)  e.  F
)
86, 7nsyl 115 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  -.  (/) 
e.  ( F  i^i  G ) )
9 filtop 17840 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
109adantr 452 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  X  e.  F )
11 filtop 17840 . . . . 5  |-  ( G  e.  ( Fil `  X
)  ->  X  e.  G )
1211adantl 453 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  X  e.  G )
13 elin 3490 . . . 4  |-  ( X  e.  ( F  i^i  G )  <->  ( X  e.  F  /\  X  e.  G ) )
1410, 12, 13sylanbrc 646 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  X  e.  ( F  i^i  G
) )
154, 8, 143jca 1134 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  (
( F  i^i  G
)  C_  ~P X  /\  -.  (/)  e.  ( F  i^i  G )  /\  X  e.  ( F  i^i  G ) ) )
16 simpll 731 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  F  e.  ( Fil `  X ) )
17 simpr2 964 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  -> 
y  e.  ( F  i^i  G ) )
181sseli 3304 . . . . . . . . 9  |-  ( y  e.  ( F  i^i  G )  ->  y  e.  F )
1917, 18syl 16 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  -> 
y  e.  F )
20 simpr1 963 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  x  e.  ~P X
)
2120elpwid 3768 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  x  C_  X )
22 simpr3 965 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  -> 
y  C_  x )
23 filss 17838 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
y  e.  F  /\  x  C_  X  /\  y  C_  x ) )  ->  x  e.  F )
2416, 19, 21, 22, 23syl13anc 1186 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  x  e.  F )
25 simplr 732 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  G  e.  ( Fil `  X ) )
26 inss2 3522 . . . . . . . . . 10  |-  ( F  i^i  G )  C_  G
2726sseli 3304 . . . . . . . . 9  |-  ( y  e.  ( F  i^i  G )  ->  y  e.  G )
2817, 27syl 16 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  -> 
y  e.  G )
29 filss 17838 . . . . . . . 8  |-  ( ( G  e.  ( Fil `  X )  /\  (
y  e.  G  /\  x  C_  X  /\  y  C_  x ) )  ->  x  e.  G )
3025, 28, 21, 22, 29syl13anc 1186 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  x  e.  G )
31 elin 3490 . . . . . . 7  |-  ( x  e.  ( F  i^i  G )  <->  ( x  e.  F  /\  x  e.  G ) )
3224, 30, 31sylanbrc 646 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ~P X  /\  y  e.  ( F  i^i  G )  /\  y  C_  x ) )  ->  x  e.  ( F  i^i  G ) )
33323exp2 1171 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  (
x  e.  ~P X  ->  ( y  e.  ( F  i^i  G )  ->  ( y  C_  x  ->  x  e.  ( F  i^i  G ) ) ) ) )
3433imp 419 . . . 4  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  x  e. 
~P X )  -> 
( y  e.  ( F  i^i  G )  ->  ( y  C_  x  ->  x  e.  ( F  i^i  G ) ) ) )
3534rexlimdv 2789 . . 3  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  x  e. 
~P X )  -> 
( E. y  e.  ( F  i^i  G
) y  C_  x  ->  x  e.  ( F  i^i  G ) ) )
3635ralrimiva 2749 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  A. x  e.  ~P  X ( E. y  e.  ( F  i^i  G ) y 
C_  x  ->  x  e.  ( F  i^i  G
) ) )
37 simpl 444 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  F  e.  ( Fil `  X
) )
381sseli 3304 . . . . . 6  |-  ( x  e.  ( F  i^i  G )  ->  x  e.  F )
3938, 18anim12i 550 . . . . 5  |-  ( ( x  e.  ( F  i^i  G )  /\  y  e.  ( F  i^i  G ) )  -> 
( x  e.  F  /\  y  e.  F
) )
40 filin 17839 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F  /\  y  e.  F )  ->  (
x  i^i  y )  e.  F )
41403expb 1154 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  y  e.  F )
)  ->  ( x  i^i  y )  e.  F
)
4237, 39, 41syl2an 464 . . . 4  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ( F  i^i  G )  /\  y  e.  ( F  i^i  G
) ) )  -> 
( x  i^i  y
)  e.  F )
43 simpr 448 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  G  e.  ( Fil `  X
) )
4426sseli 3304 . . . . . 6  |-  ( x  e.  ( F  i^i  G )  ->  x  e.  G )
4544, 27anim12i 550 . . . . 5  |-  ( ( x  e.  ( F  i^i  G )  /\  y  e.  ( F  i^i  G ) )  -> 
( x  e.  G  /\  y  e.  G
) )
46 filin 17839 . . . . . 6  |-  ( ( G  e.  ( Fil `  X )  /\  x  e.  G  /\  y  e.  G )  ->  (
x  i^i  y )  e.  G )
47463expb 1154 . . . . 5  |-  ( ( G  e.  ( Fil `  X )  /\  (
x  e.  G  /\  y  e.  G )
)  ->  ( x  i^i  y )  e.  G
)
4843, 45, 47syl2an 464 . . . 4  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ( F  i^i  G )  /\  y  e.  ( F  i^i  G
) ) )  -> 
( x  i^i  y
)  e.  G )
49 elin 3490 . . . 4  |-  ( ( x  i^i  y )  e.  ( F  i^i  G )  <->  ( ( x  i^i  y )  e.  F  /\  ( x  i^i  y )  e.  G ) )
5042, 48, 49sylanbrc 646 . . 3  |-  ( ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X ) )  /\  ( x  e.  ( F  i^i  G )  /\  y  e.  ( F  i^i  G
) ) )  -> 
( x  i^i  y
)  e.  ( F  i^i  G ) )
5150ralrimivva 2758 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  A. x  e.  ( F  i^i  G
) A. y  e.  ( F  i^i  G
) ( x  i^i  y )  e.  ( F  i^i  G ) )
52 isfil2 17841 . 2  |-  ( ( F  i^i  G )  e.  ( Fil `  X
)  <->  ( ( ( F  i^i  G ) 
C_  ~P X  /\  -.  (/) 
e.  ( F  i^i  G )  /\  X  e.  ( F  i^i  G
) )  /\  A. x  e.  ~P  X
( E. y  e.  ( F  i^i  G
) y  C_  x  ->  x  e.  ( F  i^i  G ) )  /\  A. x  e.  ( F  i^i  G
) A. y  e.  ( F  i^i  G
) ( x  i^i  y )  e.  ( F  i^i  G ) ) )
5315, 36, 51, 52syl3anbrc 1138 1  |-  ( ( F  e.  ( Fil `  X )  /\  G  e.  ( Fil `  X
) )  ->  ( F  i^i  G )  e.  ( Fil `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1721   A.wral 2666   E.wrex 2667    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   ` cfv 5413   Filcfil 17830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fv 5421  df-fbas 16654  df-fil 17831
  Copyright terms: Public domain W3C validator