MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infensuc Structured version   Unicode version

Theorem infensuc 7752
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
infensuc  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~~  suc  A )

Proof of Theorem infensuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onprc 6621 . . . . 5  |-  -.  On  e.  _V
2 eleq1 2494 . . . . 5  |-  ( om  =  On  ->  ( om  e.  _V  <->  On  e.  _V ) )
31, 2mtbiri 304 . . . 4  |-  ( om  =  On  ->  -.  om  e.  _V )
4 ssexg 4566 . . . . 5  |-  ( ( om  C_  A  /\  A  e.  On )  ->  om  e.  _V )
54ancoms 454 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  om  e.  _V )
63, 5nsyl3 122 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  -.  om  =  On )
7 omon 6713 . . . 4  |-  ( om  e.  On  \/  om  =  On )
87ori 376 . . 3  |-  ( -. 
om  e.  On  ->  om  =  On )
96, 8nsyl2 130 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  om  e.  On )
10 id 23 . . . . . . 7  |-  ( x  =  om  ->  x  =  om )
11 suceq 5503 . . . . . . 7  |-  ( x  =  om  ->  suc  x  =  suc  om )
1210, 11breq12d 4433 . . . . . 6  |-  ( x  =  om  ->  (
x  ~~  suc  x  <->  om  ~~  suc  om ) )
13 id 23 . . . . . . 7  |-  ( x  =  y  ->  x  =  y )
14 suceq 5503 . . . . . . 7  |-  ( x  =  y  ->  suc  x  =  suc  y )
1513, 14breq12d 4433 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  suc  x  <->  y  ~~  suc  y ) )
16 id 23 . . . . . . 7  |-  ( x  =  suc  y  ->  x  =  suc  y )
17 suceq 5503 . . . . . . 7  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1816, 17breq12d 4433 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  ~~  suc  x 
<->  suc  y  ~~  suc  suc  y ) )
19 id 23 . . . . . . 7  |-  ( x  =  A  ->  x  =  A )
20 suceq 5503 . . . . . . 7  |-  ( x  =  A  ->  suc  x  =  suc  A )
2119, 20breq12d 4433 . . . . . 6  |-  ( x  =  A  ->  (
x  ~~  suc  x  <->  A  ~~  suc  A ) )
22 limom 6717 . . . . . . 7  |-  Lim  om
2322limensuci 7750 . . . . . 6  |-  ( om  e.  On  ->  om  ~~  suc  om )
24 vex 3084 . . . . . . . . . 10  |-  y  e. 
_V
2524sucex 6648 . . . . . . . . . 10  |-  suc  y  e.  _V
26 en2sn 7652 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  suc  y  e.  _V )  ->  { y } 
~~  { suc  y } )
2724, 25, 26mp2an 676 . . . . . . . . 9  |-  { y }  ~~  { suc  y }
28 eloni 5448 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  Ord  y )
29 ordirr 5456 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  -.  y  e.  y )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  -.  y  e.  y )
31 disjsn 4057 . . . . . . . . . . . 12  |-  ( ( y  i^i  { y } )  =  (/)  <->  -.  y  e.  y )
3230, 31sylibr 215 . . . . . . . . . . 11  |-  ( y  e.  On  ->  (
y  i^i  { y } )  =  (/) )
33 eloni 5448 . . . . . . . . . . . . 13  |-  ( suc  y  e.  On  ->  Ord 
suc  y )
34 ordirr 5456 . . . . . . . . . . . . 13  |-  ( Ord 
suc  y  ->  -.  suc  y  e.  suc  y )
3533, 34syl 17 . . . . . . . . . . . 12  |-  ( suc  y  e.  On  ->  -. 
suc  y  e.  suc  y )
36 sucelon 6654 . . . . . . . . . . . 12  |-  ( y  e.  On  <->  suc  y  e.  On )
37 disjsn 4057 . . . . . . . . . . . 12  |-  ( ( suc  y  i^i  { suc  y } )  =  (/) 
<->  -.  suc  y  e. 
suc  y )
3835, 36, 373imtr4i 269 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( suc  y  i^i  { suc  y } )  =  (/) )
3932, 38jca 534 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )
40 unen 7655 . . . . . . . . . . . 12  |-  ( ( ( y  ~~  suc  y  /\  { y } 
~~  { suc  y } )  /\  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )  ->  ( y  u. 
{ y } ) 
~~  ( suc  y  u.  { suc  y } ) )
41 df-suc 5444 . . . . . . . . . . . 12  |-  suc  y  =  ( y  u. 
{ y } )
42 df-suc 5444 . . . . . . . . . . . 12  |-  suc  suc  y  =  ( suc  y  u.  { suc  y } )
4340, 41, 423brtr4g 4453 . . . . . . . . . . 11  |-  ( ( ( y  ~~  suc  y  /\  { y } 
~~  { suc  y } )  /\  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )  ->  suc  y  ~~  suc  suc  y )
4443ex 435 . . . . . . . . . 10  |-  ( ( y  ~~  suc  y  /\  { y }  ~~  { suc  y } )  ->  ( ( ( y  i^i  { y } )  =  (/)  /\  ( suc  y  i^i 
{ suc  y }
)  =  (/) )  ->  suc  y  ~~  suc  suc  y ) )
4539, 44syl5 33 . . . . . . . . 9  |-  ( ( y  ~~  suc  y  /\  { y }  ~~  { suc  y } )  ->  ( y  e.  On  ->  suc  y  ~~  suc  suc  y ) )
4627, 45mpan2 675 . . . . . . . 8  |-  ( y 
~~  suc  y  ->  ( y  e.  On  ->  suc  y  ~~  suc  suc  y ) )
4746com12 32 . . . . . . 7  |-  ( y  e.  On  ->  (
y  ~~  suc  y  ->  suc  y  ~~  suc  suc  y ) )
4847ad2antrr 730 . . . . . 6  |-  ( ( ( y  e.  On  /\ 
om  e.  On )  /\  om  C_  y
)  ->  ( y  ~~  suc  y  ->  suc  y  ~~  suc  suc  y
) )
49 vex 3084 . . . . . . . . 9  |-  x  e. 
_V
50 limensuc 7751 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  ~~  suc  x )
5149, 50mpan 674 . . . . . . . 8  |-  ( Lim  x  ->  x  ~~  suc  x )
5251ad2antrr 730 . . . . . . 7  |-  ( ( ( Lim  x  /\  om  e.  On )  /\  om  C_  x )  ->  x  ~~  suc  x )
5352a1d 26 . . . . . 6  |-  ( ( ( Lim  x  /\  om  e.  On )  /\  om  C_  x )  ->  ( A. y  e.  x  ( om  C_  y  ->  y 
~~  suc  y )  ->  x  ~~  suc  x
) )
5412, 15, 18, 21, 23, 48, 53tfindsg 6697 . . . . 5  |-  ( ( ( A  e.  On  /\ 
om  e.  On )  /\  om  C_  A
)  ->  A  ~~  suc  A )
5554exp31 607 . . . 4  |-  ( A  e.  On  ->  ( om  e.  On  ->  ( om  C_  A  ->  A  ~~  suc  A ) ) )
5655com23 81 . . 3  |-  ( A  e.  On  ->  ( om  C_  A  ->  ( om  e.  On  ->  A  ~~  suc  A ) ) )
5756imp 430 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( om  e.  On  ->  A  ~~  suc  A ) )
589, 57mpd 15 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~~  suc  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761   {csn 3996   class class class wbr 4420   Ord word 5437   Oncon0 5438   Lim wlim 5439   suc csuc 5440   omcom 6702    ~~ cen 7570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-om 6703  df-1o 7186  df-er 7367  df-en 7574  df-dom 7575
This theorem is referenced by:  cardlim  8407  cardsucinf  8419
  Copyright terms: Public domain W3C validator