MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdiffi Structured version   Unicode version

Theorem infdiffi 8070
Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infdiffi  |-  ( ( om  ~<_  A  /\  B  e.  Fin )  ->  ( A  \  B )  ~~  A )

Proof of Theorem infdiffi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3616 . . . . . 6  |-  ( x  =  (/)  ->  ( A 
\  x )  =  ( A  \  (/) ) )
2 dif0 3897 . . . . . 6  |-  ( A 
\  (/) )  =  A
31, 2syl6eq 2524 . . . . 5  |-  ( x  =  (/)  ->  ( A 
\  x )  =  A )
43breq1d 4457 . . . 4  |-  ( x  =  (/)  ->  ( ( A  \  x ) 
~~  A  <->  A  ~~  A ) )
54imbi2d 316 . . 3  |-  ( x  =  (/)  ->  ( ( om  ~<_  A  ->  ( A  \  x )  ~~  A )  <->  ( om  ~<_  A  ->  A  ~~  A
) ) )
6 difeq2 3616 . . . . 5  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
76breq1d 4457 . . . 4  |-  ( x  =  y  ->  (
( A  \  x
)  ~~  A  <->  ( A  \  y )  ~~  A
) )
87imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( om  ~<_  A  -> 
( A  \  x
)  ~~  A )  <->  ( om  ~<_  A  ->  ( A  \  y )  ~~  A ) ) )
9 difeq2 3616 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A  \  x )  =  ( A  \  ( y  u.  { z } ) ) )
10 difun1 3758 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
119, 10syl6eq 2524 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A  \  x )  =  ( ( A  \  y
)  \  { z } ) )
1211breq1d 4457 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( A 
\  x )  ~~  A 
<->  ( ( A  \ 
y )  \  {
z } )  ~~  A ) )
1312imbi2d 316 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( om  ~<_  A  ->  ( A  \  x )  ~~  A
)  <->  ( om  ~<_  A  -> 
( ( A  \ 
y )  \  {
z } )  ~~  A ) ) )
14 difeq2 3616 . . . . 5  |-  ( x  =  B  ->  ( A  \  x )  =  ( A  \  B
) )
1514breq1d 4457 . . . 4  |-  ( x  =  B  ->  (
( A  \  x
)  ~~  A  <->  ( A  \  B )  ~~  A
) )
1615imbi2d 316 . . 3  |-  ( x  =  B  ->  (
( om  ~<_  A  -> 
( A  \  x
)  ~~  A )  <->  ( om  ~<_  A  ->  ( A  \  B )  ~~  A ) ) )
17 reldom 7519 . . . . 5  |-  Rel  ~<_
1817brrelex2i 5040 . . . 4  |-  ( om  ~<_  A  ->  A  e.  _V )
19 enrefg 7544 . . . 4  |-  ( A  e.  _V  ->  A  ~~  A )
2018, 19syl 16 . . 3  |-  ( om  ~<_  A  ->  A  ~~  A )
21 domen2 7657 . . . . . . . . 9  |-  ( ( A  \  y ) 
~~  A  ->  ( om 
~<_  ( A  \  y
)  <->  om  ~<_  A ) )
2221biimparc 487 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  ( A  \  y )  ~~  A )  ->  om  ~<_  ( A 
\  y ) )
23 infdifsn 8069 . . . . . . . 8  |-  ( om  ~<_  ( A  \  y
)  ->  ( ( A  \  y )  \  { z } ) 
~~  ( A  \ 
y ) )
2422, 23syl 16 . . . . . . 7  |-  ( ( om  ~<_  A  /\  ( A  \  y )  ~~  A )  ->  (
( A  \  y
)  \  { z } )  ~~  ( A  \  y ) )
25 entr 7564 . . . . . . 7  |-  ( ( ( ( A  \ 
y )  \  {
z } )  ~~  ( A  \  y
)  /\  ( A  \  y )  ~~  A
)  ->  ( ( A  \  y )  \  { z } ) 
~~  A )
2624, 25sylancom 667 . . . . . 6  |-  ( ( om  ~<_  A  /\  ( A  \  y )  ~~  A )  ->  (
( A  \  y
)  \  { z } )  ~~  A
)
2726ex 434 . . . . 5  |-  ( om  ~<_  A  ->  ( ( A  \  y )  ~~  A  ->  ( ( A 
\  y )  \  { z } ) 
~~  A ) )
2827a2i 13 . . . 4  |-  ( ( om  ~<_  A  ->  ( A  \  y )  ~~  A )  ->  ( om 
~<_  A  ->  ( ( A  \  y )  \  { z } ) 
~~  A ) )
2928a1i 11 . . 3  |-  ( y  e.  Fin  ->  (
( om  ~<_  A  -> 
( A  \  y
)  ~~  A )  ->  ( om  ~<_  A  -> 
( ( A  \ 
y )  \  {
z } )  ~~  A ) ) )
305, 8, 13, 16, 20, 29findcard2 7756 . 2  |-  ( B  e.  Fin  ->  ( om 
~<_  A  ->  ( A  \  B )  ~~  A
) )
3130impcom 430 1  |-  ( ( om  ~<_  A  /\  B  e.  Fin )  ->  ( A  \  B )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473    u. cun 3474   (/)c0 3785   {csn 4027   class class class wbr 4447   omcom 6678    ~~ cen 7510    ~<_ cdom 7511   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679  df-1o 7127  df-er 7308  df-en 7514  df-dom 7515  df-fin 7517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator