MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Unicode version

Theorem infcvgaux1i 13627
Description: Auxiliary theorem for applications of supcvg 13626. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
infcvg.2  |-  ( y  e.  X  ->  A  e.  RR )
infcvg.3  |-  Z  e.  X
infcvg.4  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
Assertion
Ref Expression
infcvgaux1i  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
Distinct variable groups:    x, A    x, y    z, w, R   
x, X, y    x, Z, y
Allowed substitution hints:    A( y, z, w)    R( x, y)    X( z, w)    Z( z, w)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
2 infcvg.2 . . . . . . 7  |-  ( y  e.  X  ->  A  e.  RR )
32renegcld 9982 . . . . . 6  |-  ( y  e.  X  ->  -u A  e.  RR )
4 eleq1 2539 . . . . . 6  |-  ( x  =  -u A  ->  (
x  e.  RR  <->  -u A  e.  RR ) )
53, 4syl5ibrcom 222 . . . . 5  |-  ( y  e.  X  ->  (
x  =  -u A  ->  x  e.  RR ) )
65rexlimiv 2949 . . . 4  |-  ( E. y  e.  X  x  =  -u A  ->  x  e.  RR )
76abssi 3575 . . 3  |-  { x  |  E. y  e.  X  x  =  -u A }  C_  RR
81, 7eqsstri 3534 . 2  |-  R  C_  RR
9 infcvg.3 . . . . . 6  |-  Z  e.  X
10 eqid 2467 . . . . . 6  |-  -u [_ Z  /  y ]_ A  =  -u [_ Z  / 
y ]_ A
1110nfth 1608 . . . . . . 7  |-  F/ y
-u [_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
12 csbeq1a 3444 . . . . . . . . 9  |-  ( y  =  Z  ->  A  =  [_ Z  /  y ]_ A )
1312negeqd 9810 . . . . . . . 8  |-  ( y  =  Z  ->  -u A  =  -u [_ Z  / 
y ]_ A )
1413eqeq2d 2481 . . . . . . 7  |-  ( y  =  Z  ->  ( -u
[_ Z  /  y ]_ A  =  -u A  <->  -u
[_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
) )
1511, 14rspce 3209 . . . . . 6  |-  ( ( Z  e.  X  /\  -u
[_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
)  ->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A )
169, 10, 15mp2an 672 . . . . 5  |-  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A
17 negex 9814 . . . . . 6  |-  -u [_ Z  /  y ]_ A  e.  _V
18 nfcsb1v 3451 . . . . . . . . 9  |-  F/_ y [_ Z  /  y ]_ A
1918nfneg 9812 . . . . . . . 8  |-  F/_ y -u
[_ Z  /  y ]_ A
2019nfeq2 2646 . . . . . . 7  |-  F/ y  x  =  -u [_ Z  /  y ]_ A
21 eqeq1 2471 . . . . . . 7  |-  ( x  =  -u [_ Z  / 
y ]_ A  ->  (
x  =  -u A  <->  -u
[_ Z  /  y ]_ A  =  -u A
) )
2220, 21rexbid 2972 . . . . . 6  |-  ( x  =  -u [_ Z  / 
y ]_ A  ->  ( E. y  e.  X  x  =  -u A  <->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A ) )
2317, 22elab 3250 . . . . 5  |-  ( -u [_ Z  /  y ]_ A  e.  { x  |  E. y  e.  X  x  =  -u A }  <->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A )
2416, 23mpbir 209 . . . 4  |-  -u [_ Z  /  y ]_ A  e.  { x  |  E. y  e.  X  x  =  -u A }
2524, 1eleqtrri 2554 . . 3  |-  -u [_ Z  /  y ]_ A  e.  R
26 ne0i 3791 . . 3  |-  ( -u [_ Z  /  y ]_ A  e.  R  ->  R  =/=  (/) )
2725, 26ax-mp 5 . 2  |-  R  =/=  (/)
28 infcvg.4 . 2  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
298, 27, 283pm3.2i 1174 1  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   [_csb 3435    C_ wss 3476   (/)c0 3785   class class class wbr 4447   RRcr 9487    <_ cle 9625   -ucneg 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-ltxr 9629  df-sub 9803  df-neg 9804
This theorem is referenced by:  infcvgaux2i  13628
  Copyright terms: Public domain W3C validator