Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf5 Structured version   Unicode version

Theorem inf5 8094
 Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see theorem infeq5 8086). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.)
Assertion
Ref Expression
inf5

Proof of Theorem inf5
StepHypRef Expression
1 omex 8092 . 2
2 infeq5i 8085 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  wex 1633   wcel 1842  cvv 3058   wpss 3414  cuni 4190  com 6682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629  ax-un 6573  ax-inf2 8090 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-tr 4489  df-eprel 4733  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-om 6683 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator