MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Unicode version

Theorem inf3lem2 8037
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8043 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem2  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( A  e.  om  ->  ( F `  A
)  =/=  x ) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem2
Dummy variables  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . 5  |-  ( v  =  (/)  ->  ( F `
 v )  =  ( F `  (/) ) )
21neeq1d 2731 . . . 4  |-  ( v  =  (/)  ->  ( ( F `  v )  =/=  x  <->  ( F `  (/) )  =/=  x
) )
32imbi2d 314 . . 3  |-  ( v  =  (/)  ->  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  v
)  =/=  x )  <-> 
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  (/) )  =/=  x
) ) )
4 fveq2 5848 . . . . 5  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
54neeq1d 2731 . . . 4  |-  ( v  =  u  ->  (
( F `  v
)  =/=  x  <->  ( F `  u )  =/=  x
) )
65imbi2d 314 . . 3  |-  ( v  =  u  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  v )  =/=  x
)  <->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  u )  =/=  x ) ) )
7 fveq2 5848 . . . . 5  |-  ( v  =  suc  u  -> 
( F `  v
)  =  ( F `
 suc  u )
)
87neeq1d 2731 . . . 4  |-  ( v  =  suc  u  -> 
( ( F `  v )  =/=  x  <->  ( F `  suc  u
)  =/=  x ) )
98imbi2d 314 . . 3  |-  ( v  =  suc  u  -> 
( ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  v )  =/=  x )  <->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  suc  u )  =/=  x
) ) )
10 fveq2 5848 . . . . 5  |-  ( v  =  A  ->  ( F `  v )  =  ( F `  A ) )
1110neeq1d 2731 . . . 4  |-  ( v  =  A  ->  (
( F `  v
)  =/=  x  <->  ( F `  A )  =/=  x
) )
1211imbi2d 314 . . 3  |-  ( v  =  A  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  v )  =/=  x
)  <->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  A )  =/=  x ) ) )
13 inf3lem.1 . . . . . . . 8  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
14 inf3lem.2 . . . . . . . 8  |-  F  =  ( rec ( G ,  (/) )  |`  om )
15 inf3lem.3 . . . . . . . 8  |-  A  e. 
_V
16 inf3lem.4 . . . . . . . 8  |-  B  e. 
_V
1713, 14, 15, 16inf3lemb 8033 . . . . . . 7  |-  ( F `
 (/) )  =  (/)
1817eqeq1i 2461 . . . . . 6  |-  ( ( F `  (/) )  =  x  <->  (/)  =  x )
19 eqcom 2463 . . . . . 6  |-  ( (/)  =  x  <->  x  =  (/) )
2018, 19sylbb 197 . . . . 5  |-  ( ( F `  (/) )  =  x  ->  x  =  (/) )
2120necon3i 2694 . . . 4  |-  ( x  =/=  (/)  ->  ( F `  (/) )  =/=  x
)
2221adantr 463 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  (/) )  =/=  x )
23 vex 3109 . . . . . . . . 9  |-  u  e. 
_V
2413, 14, 23, 16inf3lemd 8035 . . . . . . . 8  |-  ( u  e.  om  ->  ( F `  u )  C_  x )
25 df-pss 3477 . . . . . . . . . 10  |-  ( ( F `  u ) 
C.  x  <->  ( ( F `  u )  C_  x  /\  ( F `
 u )  =/=  x ) )
26 pssnel 3881 . . . . . . . . . 10  |-  ( ( F `  u ) 
C.  x  ->  E. v
( v  e.  x  /\  -.  v  e.  ( F `  u ) ) )
2725, 26sylbir 213 . . . . . . . . 9  |-  ( ( ( F `  u
)  C_  x  /\  ( F `  u )  =/=  x )  ->  E. v ( v  e.  x  /\  -.  v  e.  ( F `  u
) ) )
28 ssel 3483 . . . . . . . . . . . . . . 15  |-  ( x 
C_  U. x  ->  (
v  e.  x  -> 
v  e.  U. x
) )
29 eluni 4238 . . . . . . . . . . . . . . 15  |-  ( v  e.  U. x  <->  E. f
( v  e.  f  /\  f  e.  x
) )
3028, 29syl6ib 226 . . . . . . . . . . . . . 14  |-  ( x 
C_  U. x  ->  (
v  e.  x  ->  E. f ( v  e.  f  /\  f  e.  x ) ) )
31 eleq2 2527 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  suc  u
)  =  x  -> 
( f  e.  ( F `  suc  u
)  <->  f  e.  x
) )
3231biimparc 485 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  x  /\  ( F `  suc  u
)  =  x )  ->  f  e.  ( F `  suc  u
) )
3313, 14, 23, 16inf3lemc 8034 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  om  ->  ( F `  suc  u )  =  ( G `  ( F `  u ) ) )
3433eleq2d 2524 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  om  ->  (
f  e.  ( F `
 suc  u )  <->  f  e.  ( G `  ( F `  u ) ) ) )
35 elin 3673 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  ( f  i^i  x )  <->  ( v  e.  f  /\  v  e.  x ) )
36 vex 3109 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  f  e. 
_V
37 fvex 5858 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F `
 u )  e. 
_V
3813, 14, 36, 37inf3lema 8032 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  e.  ( G `  ( F `  u ) )  <->  ( f  e.  x  /\  ( f  i^i  x )  C_  ( F `  u ) ) )
3938simprbi 462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  e.  ( G `  ( F `  u ) )  ->  ( f  i^i  x )  C_  ( F `  u )
)
4039sseld 3488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  e.  ( G `  ( F `  u ) )  ->  ( v  e.  ( f  i^i  x
)  ->  v  e.  ( F `  u ) ) )
4135, 40syl5bir 218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e.  ( G `  ( F `  u ) )  ->  ( (
v  e.  f  /\  v  e.  x )  ->  v  e.  ( F `
 u ) ) )
4234, 41syl6bi 228 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  om  ->  (
f  e.  ( F `
 suc  u )  ->  ( ( v  e.  f  /\  v  e.  x )  ->  v  e.  ( F `  u
) ) ) )
4332, 42syl5 32 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  om  ->  (
( f  e.  x  /\  ( F `  suc  u )  =  x )  ->  ( (
v  e.  f  /\  v  e.  x )  ->  v  e.  ( F `
 u ) ) ) )
4443com23 78 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  om  ->  (
( v  e.  f  /\  v  e.  x
)  ->  ( (
f  e.  x  /\  ( F `  suc  u
)  =  x )  ->  v  e.  ( F `  u ) ) ) )
4544exp5c 614 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  om  ->  (
v  e.  f  -> 
( v  e.  x  ->  ( f  e.  x  ->  ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u ) ) ) ) ) )
4645com34 83 . . . . . . . . . . . . . . . 16  |-  ( u  e.  om  ->  (
v  e.  f  -> 
( f  e.  x  ->  ( v  e.  x  ->  ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u ) ) ) ) ) )
4746impd 429 . . . . . . . . . . . . . . 15  |-  ( u  e.  om  ->  (
( v  e.  f  /\  f  e.  x
)  ->  ( v  e.  x  ->  ( ( F `  suc  u
)  =  x  -> 
v  e.  ( F `
 u ) ) ) ) )
4847exlimdv 1729 . . . . . . . . . . . . . 14  |-  ( u  e.  om  ->  ( E. f ( v  e.  f  /\  f  e.  x )  ->  (
v  e.  x  -> 
( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u ) ) ) ) )
4930, 48sylan9r 656 . . . . . . . . . . . . 13  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( v  e.  x  ->  ( v  e.  x  ->  ( ( F `  suc  u
)  =  x  -> 
v  e.  ( F `
 u ) ) ) ) )
5049pm2.43d 48 . . . . . . . . . . . 12  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( v  e.  x  ->  ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u
) ) ) )
51 id 22 . . . . . . . . . . . . 13  |-  ( ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u ) )  ->  ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u
) ) )
5251necon3bd 2666 . . . . . . . . . . . 12  |-  ( ( ( F `  suc  u )  =  x  ->  v  e.  ( F `  u ) )  ->  ( -.  v  e.  ( F `  u )  ->  ( F `  suc  u )  =/=  x ) )
5350, 52syl6 33 . . . . . . . . . . 11  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( v  e.  x  ->  ( -.  v  e.  ( F `  u )  ->  ( F `  suc  u )  =/=  x ) ) )
5453impd 429 . . . . . . . . . 10  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( ( v  e.  x  /\  -.  v  e.  ( F `  u ) )  -> 
( F `  suc  u )  =/=  x
) )
5554exlimdv 1729 . . . . . . . . 9  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( E. v
( v  e.  x  /\  -.  v  e.  ( F `  u ) )  ->  ( F `  suc  u )  =/=  x ) )
5627, 55syl5 32 . . . . . . . 8  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( ( ( F `  u ) 
C_  x  /\  ( F `  u )  =/=  x )  ->  ( F `  suc  u )  =/=  x ) )
5724, 56sylani 652 . . . . . . 7  |-  ( ( u  e.  om  /\  x  C_  U. x )  ->  ( ( u  e.  om  /\  ( F `  u )  =/=  x )  ->  ( F `  suc  u )  =/=  x ) )
5857exp4b 605 . . . . . 6  |-  ( u  e.  om  ->  (
x  C_  U. x  ->  ( u  e.  om  ->  ( ( F `  u )  =/=  x  ->  ( F `  suc  u )  =/=  x
) ) ) )
5958pm2.43a 49 . . . . 5  |-  ( u  e.  om  ->  (
x  C_  U. x  ->  ( ( F `  u )  =/=  x  ->  ( F `  suc  u )  =/=  x
) ) )
6059adantld 465 . . . 4  |-  ( u  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( F `  u )  =/=  x  ->  ( F `  suc  u )  =/=  x
) ) )
6160a2d 26 . . 3  |-  ( u  e.  om  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  u )  =/=  x
)  ->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  suc  u )  =/=  x
) ) )
623, 6, 9, 12, 22, 61finds 6699 . 2  |-  ( A  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  A
)  =/=  x ) )
6362com12 31 1  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( A  e.  om  ->  ( F `  A
)  =/=  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   {crab 2808   _Vcvv 3106    i^i cin 3460    C_ wss 3461    C. wpss 3462   (/)c0 3783   U.cuni 4235    |-> cmpt 4497   suc csuc 4869    |` cres 4990   ` cfv 5570   omcom 6673   reccrdg 7067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-recs 7034  df-rdg 7068
This theorem is referenced by:  inf3lem3  8038
  Copyright terms: Public domain W3C validator