MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Unicode version

Theorem inf3lem1 7834
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 7841 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem1  |-  ( A  e.  om  ->  ( F `  A )  C_  ( F `  suc  A ) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem1
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5691 . . 3  |-  ( v  =  (/)  ->  ( F `
 v )  =  ( F `  (/) ) )
2 suceq 4784 . . . 4  |-  ( v  =  (/)  ->  suc  v  =  suc  (/) )
32fveq2d 5695 . . 3  |-  ( v  =  (/)  ->  ( F `
 suc  v )  =  ( F `  suc  (/) ) )
41, 3sseq12d 3385 . 2  |-  ( v  =  (/)  ->  ( ( F `  v ) 
C_  ( F `  suc  v )  <->  ( F `  (/) )  C_  ( F `  suc  (/) ) ) )
5 fveq2 5691 . . 3  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
6 suceq 4784 . . . 4  |-  ( v  =  u  ->  suc  v  =  suc  u )
76fveq2d 5695 . . 3  |-  ( v  =  u  ->  ( F `  suc  v )  =  ( F `  suc  u ) )
85, 7sseq12d 3385 . 2  |-  ( v  =  u  ->  (
( F `  v
)  C_  ( F `  suc  v )  <->  ( F `  u )  C_  ( F `  suc  u ) ) )
9 fveq2 5691 . . 3  |-  ( v  =  suc  u  -> 
( F `  v
)  =  ( F `
 suc  u )
)
10 suceq 4784 . . . 4  |-  ( v  =  suc  u  ->  suc  v  =  suc  suc  u )
1110fveq2d 5695 . . 3  |-  ( v  =  suc  u  -> 
( F `  suc  v )  =  ( F `  suc  suc  u ) )
129, 11sseq12d 3385 . 2  |-  ( v  =  suc  u  -> 
( ( F `  v )  C_  ( F `  suc  v )  <-> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) ) )
13 fveq2 5691 . . 3  |-  ( v  =  A  ->  ( F `  v )  =  ( F `  A ) )
14 suceq 4784 . . . 4  |-  ( v  =  A  ->  suc  v  =  suc  A )
1514fveq2d 5695 . . 3  |-  ( v  =  A  ->  ( F `  suc  v )  =  ( F `  suc  A ) )
1613, 15sseq12d 3385 . 2  |-  ( v  =  A  ->  (
( F `  v
)  C_  ( F `  suc  v )  <->  ( F `  A )  C_  ( F `  suc  A ) ) )
17 inf3lem.1 . . . 4  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
18 inf3lem.2 . . . 4  |-  F  =  ( rec ( G ,  (/) )  |`  om )
19 inf3lem.3 . . . 4  |-  A  e. 
_V
2017, 18, 19, 19inf3lemb 7831 . . 3  |-  ( F `
 (/) )  =  (/)
21 0ss 3666 . . 3  |-  (/)  C_  ( F `  suc  (/) )
2220, 21eqsstri 3386 . 2  |-  ( F `
 (/) )  C_  ( F `  suc  (/) )
23 sstr2 3363 . . . . . . . 8  |-  ( ( v  i^i  x ) 
C_  ( F `  u )  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( v  i^i  x
)  C_  ( F `  suc  u ) ) )
2423com12 31 . . . . . . 7  |-  ( ( F `  u ) 
C_  ( F `  suc  u )  ->  (
( v  i^i  x
)  C_  ( F `  u )  ->  (
v  i^i  x )  C_  ( F `  suc  u ) ) )
2524anim2d 565 . . . . . 6  |-  ( ( F `  u ) 
C_  ( F `  suc  u )  ->  (
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) )  -> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) )
26 vex 2975 . . . . . . . . . 10  |-  u  e. 
_V
2717, 18, 26, 19inf3lemc 7832 . . . . . . . . 9  |-  ( u  e.  om  ->  ( F `  suc  u )  =  ( G `  ( F `  u ) ) )
2827eleq2d 2510 . . . . . . . 8  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  u )  <->  v  e.  ( G `  ( F `  u ) ) ) )
29 vex 2975 . . . . . . . . 9  |-  v  e. 
_V
30 fvex 5701 . . . . . . . . 9  |-  ( F `
 u )  e. 
_V
3117, 18, 29, 30inf3lema 7830 . . . . . . . 8  |-  ( v  e.  ( G `  ( F `  u ) )  <->  ( v  e.  x  /\  ( v  i^i  x )  C_  ( F `  u ) ) )
3228, 31syl6bb 261 . . . . . . 7  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  u )  <->  ( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) ) ) )
33 peano2b 6492 . . . . . . . . . 10  |-  ( u  e.  om  <->  suc  u  e. 
om )
3426sucex 6422 . . . . . . . . . . 11  |-  suc  u  e.  _V
3517, 18, 34, 19inf3lemc 7832 . . . . . . . . . 10  |-  ( suc  u  e.  om  ->  ( F `  suc  suc  u )  =  ( G `  ( F `
 suc  u )
) )
3633, 35sylbi 195 . . . . . . . . 9  |-  ( u  e.  om  ->  ( F `  suc  suc  u
)  =  ( G `
 ( F `  suc  u ) ) )
3736eleq2d 2510 . . . . . . . 8  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  suc  u )  <-> 
v  e.  ( G `
 ( F `  suc  u ) ) ) )
38 fvex 5701 . . . . . . . . 9  |-  ( F `
 suc  u )  e.  _V
3917, 18, 29, 38inf3lema 7830 . . . . . . . 8  |-  ( v  e.  ( G `  ( F `  suc  u
) )  <->  ( v  e.  x  /\  (
v  i^i  x )  C_  ( F `  suc  u ) ) )
4037, 39syl6bb 261 . . . . . . 7  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  suc  u )  <-> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) )
4132, 40imbi12d 320 . . . . . 6  |-  ( u  e.  om  ->  (
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) )  <->  ( (
v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) )  -> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) ) )
4225, 41syl5ibr 221 . . . . 5  |-  ( u  e.  om  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) ) ) )
4342imp 429 . . . 4  |-  ( ( u  e.  om  /\  ( F `  u ) 
C_  ( F `  suc  u ) )  -> 
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) ) )
4443ssrdv 3362 . . 3  |-  ( ( u  e.  om  /\  ( F `  u ) 
C_  ( F `  suc  u ) )  -> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) )
4544ex 434 . 2  |-  ( u  e.  om  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) ) )
464, 8, 12, 16, 22, 45finds 6502 1  |-  ( A  e.  om  ->  ( F `  A )  C_  ( F `  suc  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2719   _Vcvv 2972    i^i cin 3327    C_ wss 3328   (/)c0 3637    e. cmpt 4350   suc csuc 4721    |` cres 4842   ` cfv 5418   omcom 6476   reccrdg 6865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-om 6477  df-recs 6832  df-rdg 6866
This theorem is referenced by:  inf3lem4  7837
  Copyright terms: Public domain W3C validator