Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Unicode version

Theorem inf3 7220
 Description: Our Axiom of Infinity ax-inf 7223 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 7208, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 7225 and zfinf2 7227.) The main proof is provided by inf3lema 7209 through inf3lem7 7219, and this final piece eliminates the auxiliary hypothesis of inf3lem7 7219. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.  (As posted to sci.logic on 30-Oct-1996, with annotations added.) Theorem: The statement "There exists a non-empty set that is a subset of its union" implies the Axiom of Infinity. Proof: Let X be a nonempty set which is a subset of its union; the latter property is equivalent to saying that for any y in X, there exists a z in X such that y is in z. Define by finite recursion a function F:omega-->(power X) such that F_0 = 0 (See inf3lemb 7210.) F_n+1 = {y y^(X-F_n) = 0, we have F_n+1 = {y m. Basis: F_m proper_subset F_m+1 by Lemma 4. Induction: Assume F_m proper_subset F_n. Then since F_n proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper subset. By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1. (See inf3lem6 7218.) Thus the inverse of F is a function with range omega and domain a subset of power X, so omega exists by Replacement. (See inf3lem7 7219.) Q.E.D.  (Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1
Assertion
Ref Expression
inf3

Proof of Theorem inf3
StepHypRef Expression
1 inf3.1 . 2
2 eqid 2253 . . . 4
3 eqid 2253 . . . 4
4 vex 2730 . . . 4
52, 3, 4, 4inf3lem7 7219 . . 3
65exlimiv 2023 . 2
71, 6ax-mp 10 1
 Colors of variables: wff set class Syntax hints:   wa 360  wex 1537   wcel 1621   wne 2412  crab 2512  cvv 2727   cin 3077   wss 3078  c0 3362  cuni 3727   cmpt 3974  com 4547   cres 4582  crdg 6308 This theorem is referenced by:  axinf2  7225 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-reg 7190 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309
 Copyright terms: Public domain W3C validator