MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr2 Structured version   Unicode version

Theorem indstr2 11185
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
indstr2.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
indstr2.3  |-  ch
indstr2.4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
Assertion
Ref Expression
indstr2  |-  ( x  e.  NN  ->  ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( x, y)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 elnn1uz2 11183 . . 3  |-  ( x  e.  NN  <->  ( x  =  1  \/  x  e.  ( ZZ>= `  2 )
) )
3 indstr2.3 . . . . 5  |-  ch
4 nnnlt1 10586 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  -.  y  <  1 )
54adantl 466 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  1 )
6 breq2 4460 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
y  <  x  <->  y  <  1 ) )
76adantr 465 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  <->  y  <  1
) )
85, 7mtbird 301 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  x )
98pm2.21d 106 . . . . . . . 8  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  ->  ps )
)
109ralrimiva 2871 . . . . . . 7  |-  ( x  =  1  ->  A. y  e.  NN  ( y  < 
x  ->  ps )
)
11 pm5.5 336 . . . . . . 7  |-  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ( ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )  <->  ph ) )
1210, 11syl 16 . . . . . 6  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ph ) )
13 indstr2.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
1412, 13bitrd 253 . . . . 5  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ch )
)
153, 14mpbiri 233 . . . 4  |-  ( x  =  1  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
16 indstr2.4 . . . 4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
1715, 16jaoi 379 . . 3  |-  ( ( x  =  1  \/  x  e.  ( ZZ>= ` 
2 ) )  -> 
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph ) )
182, 17sylbi 195 . 2  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
191, 18indstr 11175 1  |-  ( x  e.  NN  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   class class class wbr 4456   ` cfv 5594   1c1 9510    < clt 9645   NNcn 10556   2c2 10606   ZZ>=cuz 11106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107
This theorem is referenced by:  nn0prpwlem  30345
  Copyright terms: Public domain W3C validator