Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispcon Structured version   Unicode version

Theorem indispcon 28868
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispcon  |-  { (/) ,  A }  e. PCon

Proof of Theorem indispcon
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 19588 . 2  |-  { (/) ,  A }  e.  Top
2 simpl 455 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  U. { (/) ,  A } )
3 0ex 4497 . . . . . . . . . . . 12  |-  (/)  e.  _V
4 n0i 3716 . . . . . . . . . . . . . 14  |-  ( x  e.  U. { (/) ,  A }  ->  -.  U. { (/) ,  A }  =  (/) )
5 prprc2 4055 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  {
(/) ,  A }  =  { (/) } )
65unieqd 4173 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  U. { (/) } )
73unisn 4178 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  =  (/)
86, 7syl6eq 2439 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  (/) )
94, 8nsyl2 127 . . . . . . . . . . . . 13  |-  ( x  e.  U. { (/) ,  A }  ->  A  e.  _V )
109adantr 463 . . . . . . . . . . . 12  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  A  e.  _V )
11 uniprg 4177 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  _V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
123, 10, 11sylancr 661 . . . . . . . . . . 11  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  ( (/)  u.  A
) )
13 uncom 3562 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
14 un0 3737 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
1513, 14eqtri 2411 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
1612, 15syl6eq 2439 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  A )
172, 16eleqtrd 2472 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  A )
18 simpr 459 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  U. { (/)
,  A } )
1918, 16eleqtrd 2472 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  A )
2017, 19ifcld 3900 . . . . . . . 8  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  if ( z  =  0 ,  x ,  y )  e.  A )
2120adantr 463 . . . . . . 7  |-  ( ( ( x  e.  U. { (/) ,  A }  /\  y  e.  U. { (/)
,  A } )  /\  z  e.  ( 0 [,] 1 ) )  ->  if (
z  =  0 ,  x ,  y )  e.  A )
22 eqid 2382 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )  =  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )
2321, 22fmptd 5957 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1
) --> A )
24 ovex 6224 . . . . . . 7  |-  ( 0 [,] 1 )  e. 
_V
25 elmapg 7351 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( 0 [,] 1
)  e.  _V )  ->  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2610, 24, 25sylancl 660 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2723, 26mpbird 232 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  (
0 [,] 1 ) ) )
28 iitopon 21468 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
29 cnindis 19879 . . . . . 6  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  A  e.  _V )  ->  (
II  Cn  { (/) ,  A } )  =  ( A  ^m  ( 0 [,] 1 ) ) )
3028, 10, 29sylancr 661 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( II  Cn  { (/)
,  A } )  =  ( A  ^m  ( 0 [,] 1
) ) )
3127, 30eleqtrrd 2473 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } ) )
32 0elunit 11559 . . . . 5  |-  0  e.  ( 0 [,] 1
)
33 iftrue 3863 . . . . . 6  |-  ( z  =  0  ->  if ( z  =  0 ,  x ,  y )  =  x )
34 vex 3037 . . . . . 6  |-  x  e. 
_V
3533, 22, 34fvmpt 5857 . . . . 5  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x )
3632, 35mp1i 12 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 0 )  =  x )
37 1elunit 11560 . . . . 5  |-  1  e.  ( 0 [,] 1
)
38 ax-1ne0 9472 . . . . . . . 8  |-  1  =/=  0
39 neeq1 2663 . . . . . . . 8  |-  ( z  =  1  ->  (
z  =/=  0  <->  1  =/=  0 ) )
4038, 39mpbiri 233 . . . . . . 7  |-  ( z  =  1  ->  z  =/=  0 )
41 ifnefalse 3869 . . . . . . 7  |-  ( z  =/=  0  ->  if ( z  =  0 ,  x ,  y )  =  y )
4240, 41syl 16 . . . . . 6  |-  ( z  =  1  ->  if ( z  =  0 ,  x ,  y )  =  y )
43 vex 3037 . . . . . 6  |-  y  e. 
_V
4442, 22, 43fvmpt 5857 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 )  =  y )
4537, 44mp1i 12 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y )
46 fveq1 5773 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
0 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 ) )
4746eqeq1d 2384 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 0 )  =  x  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0 )  =  x ) )
48 fveq1 5773 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
1 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 ) )
4948eqeq1d 2384 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 1 )  =  y  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) )
5047, 49anbi12d 708 . . . . 5  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )  <->  ( (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x  /\  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) ) )
5150rspcev 3135 . . . 4  |-  ( ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } )  /\  ( ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0
)  =  x  /\  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y ) )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5231, 36, 45, 51syl12anc 1224 . . 3  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5352rgen2a 2809 . 2  |-  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )
54 eqid 2382 . . 3  |-  U. { (/)
,  A }  =  U. { (/) ,  A }
5554ispcon 28857 . 2  |-  ( {
(/) ,  A }  e. PCon  <-> 
( { (/) ,  A }  e.  Top  /\  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  ( II  Cn  { (/) ,  A } ) ( ( f `  0
)  =  x  /\  ( f `  1
)  =  y ) ) )
561, 53, 55mpbir2an 918 1  |-  { (/) ,  A }  e. PCon
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733   _Vcvv 3034    u. cun 3387   (/)c0 3711   ifcif 3857   {csn 3944   {cpr 3946   U.cuni 4163    |-> cmpt 4425   -->wf 5492   ` cfv 5496  (class class class)co 6196    ^m cmap 7338   0cc0 9403   1c1 9404   [,]cicc 11453   Topctop 19479  TopOnctopon 19480    Cn ccn 19811   IIcii 21464  PConcpcon 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-sup 7816  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-icc 11457  df-seq 12011  df-exp 12070  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-topgen 14851  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-top 19484  df-bases 19486  df-topon 19487  df-cn 19814  df-ii 21466  df-pcon 28855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator