MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indi Structured version   Visualization version   Unicode version

Theorem indi 3701
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
indi  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )

Proof of Theorem indi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 andi 883 . . . 4  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( (
x  e.  A  /\  x  e.  B )  \/  ( x  e.  A  /\  x  e.  C
) ) )
2 elin 3629 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3629 . . . . 5  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
42, 3orbi12i 528 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  \/  x  e.  ( A  i^i  C ) )  <-> 
( ( x  e.  A  /\  x  e.  B )  \/  (
x  e.  A  /\  x  e.  C )
) )
51, 4bitr4i 260 . . 3  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
6 elun 3586 . . . 4  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
76anbi2i 705 . . 3  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  \/  x  e.  C )
) )
8 elun 3586 . . 3  |-  ( x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
95, 7, 83bitr4i 285 . 2  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C ) ) )
109ineqri 3638 1  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898    u. cun 3414    i^i cin 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-v 3059  df-un 3421  df-in 3423
This theorem is referenced by:  indir  3703  difindi  3709  undisj2  3829  disjssun  3834  difdifdir  3867  disjpr2  4046  diftpsn3  4123  resundi  5137  fresaun  5777  elfiun  7970  unxpwdom  8130  kmlem2  8607  cdainf  8648  ackbij1lem1  8676  ackbij1lem2  8677  ssxr  9729  incexclem  13943  bitsinv1  14465  bitsinvp1  14472  bitsres  14496  paste  20359  unmbl  22540  ovolioo  22570  uniioombllem4  22593  volcn  22613  ellimc2  22881  lhop2  23016  ex-in  25924  eulerpartgbij  29254  poimirlem3  31988  poimirlem15  32000  asindmre  32072  iunrelexp0  36339  sge0resplit  38286  sge0split  38289
  Copyright terms: Public domain W3C validator