Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexdom Structured version   Unicode version

Theorem indexdom 29815
Description: If for every element of an indexing set  A there exists a corresponding element of another set  B, then there exists a subset of  B consisting only of those elements which are indexed by  A, and which is dominated by the set  A. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexdom  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
Distinct variable groups:    A, c, x, y    B, c, x, y    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexdom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3344 . . 3  |-  F/ y
[. ( f `  x )  /  y ]. ph
2 sbceq1a 3335 . . 3  |-  ( y  =  ( f `  x )  ->  ( ph 
<-> 
[. ( f `  x )  /  y ]. ph ) )
31, 2ac6gf 29813 . 2  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
4 fdm 5726 . . . . . . 7  |-  ( f : A --> B  ->  dom  f  =  A
)
5 vex 3109 . . . . . . . 8  |-  f  e. 
_V
65dmex 6707 . . . . . . 7  |-  dom  f  e.  _V
74, 6syl6eqelr 2557 . . . . . 6  |-  ( f : A --> B  ->  A  e.  _V )
8 ffn 5722 . . . . . 6  |-  ( f : A --> B  -> 
f  Fn  A )
9 fnrndomg 8902 . . . . . 6  |-  ( A  e.  _V  ->  (
f  Fn  A  ->  ran  f  ~<_  A )
)
107, 8, 9sylc 60 . . . . 5  |-  ( f : A --> B  ->  ran  f  ~<_  A )
1110adantr 465 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ran  f  ~<_  A )
12 frn 5728 . . . . 5  |-  ( f : A --> B  ->  ran  f  C_  B )
1312adantr 465 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ran  f  C_  B )
14 nfv 1678 . . . . . 6  |-  F/ x  f : A --> B
15 nfra1 2838 . . . . . 6  |-  F/ x A. x  e.  A  [. ( f `  x
)  /  y ]. ph
1614, 15nfan 1870 . . . . 5  |-  F/ x
( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
17 ffun 5724 . . . . . . . . . 10  |-  ( f : A --> B  ->  Fun  f )
1817adantr 465 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  Fun  f )
194eleq2d 2530 . . . . . . . . . 10  |-  ( f : A --> B  -> 
( x  e.  dom  f 
<->  x  e.  A ) )
2019biimpar 485 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  x  e.  dom  f
)
21 fvelrn 6008 . . . . . . . . 9  |-  ( ( Fun  f  /\  x  e.  dom  f )  -> 
( f `  x
)  e.  ran  f
)
2218, 20, 21syl2anc 661 . . . . . . . 8  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
2322adantlr 714 . . . . . . 7  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
24 rsp 2823 . . . . . . . . 9  |-  ( A. x  e.  A  [. (
f `  x )  /  y ]. ph  ->  ( x  e.  A  ->  [. ( f `  x
)  /  y ]. ph ) )
2524imp 429 . . . . . . . 8  |-  ( ( A. x  e.  A  [. ( f `  x
)  /  y ]. ph 
/\  x  e.  A
)  ->  [. ( f `
 x )  / 
y ]. ph )
2625adantll 713 . . . . . . 7  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  [. ( f `  x )  /  y ]. ph )
27 rspesbca 3416 . . . . . . 7  |-  ( ( ( f `  x
)  e.  ran  f  /\  [. ( f `  x )  /  y ]. ph )  ->  E. y  e.  ran  f ph )
2823, 26, 27syl2anc 661 . . . . . 6  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  E. y  e.  ran  f ph )
2928ex 434 . . . . 5  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  E. y  e.  ran  f ph )
)
3016, 29ralrimi 2857 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  A. x  e.  A  E. y  e.  ran  f ph )
31 nfv 1678 . . . . . 6  |-  F/ y  f : A --> B
32 nfcv 2622 . . . . . . 7  |-  F/_ y A
3332, 1nfral 2843 . . . . . 6  |-  F/ y A. x  e.  A  [. ( f `  x
)  /  y ]. ph
3431, 33nfan 1870 . . . . 5  |-  F/ y ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
35 fvelrnb 5906 . . . . . . . 8  |-  ( f  Fn  A  ->  (
y  e.  ran  f  <->  E. x  e.  A  ( f `  x )  =  y ) )
368, 35syl 16 . . . . . . 7  |-  ( f : A --> B  -> 
( y  e.  ran  f 
<->  E. x  e.  A  ( f `  x
)  =  y ) )
3736adantr 465 . . . . . 6  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( y  e.  ran  f  <->  E. x  e.  A  ( f `  x )  =  y ) )
3824adantl 466 . . . . . . . 8  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  [. (
f `  x )  /  y ]. ph )
)
392eqcoms 2472 . . . . . . . . 9  |-  ( ( f `  x )  =  y  ->  ( ph 
<-> 
[. ( f `  x )  /  y ]. ph ) )
4039biimprcd 225 . . . . . . . 8  |-  ( [. ( f `  x
)  /  y ]. ph 
->  ( ( f `  x )  =  y  ->  ph ) )
4138, 40syl6 33 . . . . . . 7  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  ( ( f `  x )  =  y  ->  ph )
) )
4216, 41reximdai 2926 . . . . . 6  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( E. x  e.  A  (
f `  x )  =  y  ->  E. x  e.  A  ph ) )
4337, 42sylbid 215 . . . . 5  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( y  e.  ran  f  ->  E. x  e.  A  ph ) )
4434, 43ralrimi 2857 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  A. y  e.  ran  f E. x  e.  A  ph )
455rnex 6708 . . . . 5  |-  ran  f  e.  _V
46 breq1 4443 . . . . . . 7  |-  ( c  =  ran  f  -> 
( c  ~<_  A  <->  ran  f  ~<_  A ) )
47 sseq1 3518 . . . . . . 7  |-  ( c  =  ran  f  -> 
( c  C_  B  <->  ran  f  C_  B )
)
4846, 47anbi12d 710 . . . . . 6  |-  ( c  =  ran  f  -> 
( ( c  ~<_  A  /\  c  C_  B
)  <->  ( ran  f  ~<_  A  /\  ran  f  C_  B ) ) )
49 rexeq 3052 . . . . . . . 8  |-  ( c  =  ran  f  -> 
( E. y  e.  c  ph  <->  E. y  e.  ran  f ph )
)
5049ralbidv 2896 . . . . . . 7  |-  ( c  =  ran  f  -> 
( A. x  e.  A  E. y  e.  c  ph  <->  A. x  e.  A  E. y  e.  ran  f ph )
)
51 raleq 3051 . . . . . . 7  |-  ( c  =  ran  f  -> 
( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  ran  f E. x  e.  A  ph ) )
5250, 51anbi12d 710 . . . . . 6  |-  ( c  =  ran  f  -> 
( ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) ) )
5348, 52anbi12d 710 . . . . 5  |-  ( c  =  ran  f  -> 
( ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) )  <-> 
( ( ran  f  ~<_  A  /\  ran  f  C_  B )  /\  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) ) ) )
5445, 53spcev 3198 . . . 4  |-  ( ( ( ran  f  ~<_  A  /\  ran  f  C_  B )  /\  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
5511, 13, 30, 44, 54syl22anc 1224 . . 3  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  E. c
( ( c  ~<_  A  /\  c  C_  B
)  /\  ( A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) ) )
5655exlimiv 1693 . 2  |-  ( E. f ( f : A --> B  /\  A. x  e.  A  [. (
f `  x )  /  y ]. ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
573, 56syl 16 1  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2807   E.wrex 2808   _Vcvv 3106   [.wsbc 3324    C_ wss 3469   class class class wbr 4440   dom cdm 4992   ran crn 4993   Fun wfun 5573    Fn wfn 5574   -->wf 5575   ` cfv 5579    ~<_ cdom 7504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-reg 8007  ax-inf2 8047  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-r1 8171  df-rank 8172  df-card 8309  df-acn 8312  df-ac 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator