Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   Unicode version

Theorem indexa 32124
Description: If for every element of an indexing set  A there exists a corresponding element of another set  B, then there exists a subset of  B consisting only of those elements which are indexed by  A. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Distinct variable groups:    x, A, y, c    x, B, y, c    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexa
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4549 . 2  |-  ( B  e.  M  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V )
2 ssrab2 3500 . . . 4  |-  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B
32a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B )
4 nfv 1769 . . . . 5  |-  F/ y  x  e.  A
5 nfre1 2846 . . . . 5  |-  F/ y E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph
6 sbceq2a 3267 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( [. w  /  x ]. ph  <->  ph ) )
76rspcev 3136 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ph )  ->  E. w  e.  A  [. w  /  x ]. ph )
87ancoms 460 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  E. w  e.  A  [. w  /  x ]. ph )
98anim2i 579 . . . . . . . . . . . 12  |-  ( ( y  e.  B  /\  ( ph  /\  x  e.  A ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
109ancoms 460 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  (
y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph )
)
1110anasss 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1211ancoms 460 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
13 sbceq2a 3267 . . . . . . . . . . . 12  |-  ( z  =  y  ->  ( [. z  /  y ]. ph  <->  ph ) )
1413sbcbidv 3310 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( [. w  /  x ]. [. z  /  y ]. ph  <->  [. w  /  x ]. ph ) )
1514rexbidv 2892 . . . . . . . . . 10  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. w  e.  A  [. w  /  x ]. ph )
)
1615elrab 3184 . . . . . . . . 9  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1712, 16sylibr 217 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
)
18 sbceq2a 3267 . . . . . . . . 9  |-  ( v  =  y  ->  ( [. v  /  y ]. ph  <->  ph ) )
1918rspcev 3136 . . . . . . . 8  |-  ( ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  / 
y ]. ph )
2017, 19sylancom 680 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph )
21 nfcv 2612 . . . . . . . 8  |-  F/_ v { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
22 nfcv 2612 . . . . . . . . . 10  |-  F/_ y A
23 nfcv 2612 . . . . . . . . . . 11  |-  F/_ y
w
24 nfsbc1v 3275 . . . . . . . . . . 11  |-  F/ y
[. z  /  y ]. ph
2523, 24nfsbc 3277 . . . . . . . . . 10  |-  F/ y
[. w  /  x ]. [. z  /  y ]. ph
2622, 25nfrex 2848 . . . . . . . . 9  |-  F/ y E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
27 nfcv 2612 . . . . . . . . 9  |-  F/_ y B
2826, 27nfrab 2958 . . . . . . . 8  |-  F/_ y { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
29 nfsbc1v 3275 . . . . . . . 8  |-  F/ y
[. v  /  y ]. ph
30 nfv 1769 . . . . . . . 8  |-  F/ v
ph
3121, 28, 29, 30, 18cbvrexf 3000 . . . . . . 7  |-  ( E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph  <->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3220, 31sylib 201 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3332exp31 615 . . . . 5  |-  ( x  e.  A  ->  (
y  e.  B  -> 
( ph  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) ) )
344, 5, 33rexlimd 2866 . . . 4  |-  ( x  e.  A  ->  ( E. y  e.  B  ph 
->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
3534ralimia 2794 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
36 nfsbc1v 3275 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
37 nfv 1769 . . . . . . . . 9  |-  F/ w ph
3836, 37, 6cbvrex 3002 . . . . . . . 8  |-  ( E. w  e.  A  [. w  /  x ]. ph  <->  E. x  e.  A  ph )
3915, 38syl6bb 269 . . . . . . 7  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. x  e.  A  ph ) )
4039elrab 3184 . . . . . 6  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
4140simprbi 471 . . . . 5  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  E. x  e.  A  ph )
4241rgen 2766 . . . 4  |-  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph
4342a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )
443, 35, 433jca 1210 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
45 sseq1 3439 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( c  C_  B  <->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B ) )
46 nfcv 2612 . . . . . . . . 9  |-  F/_ x A
47 nfsbc1v 3275 . . . . . . . . 9  |-  F/ x [. w  /  x ]. [. z  /  y ]. ph
4846, 47nfrex 2848 . . . . . . . 8  |-  F/ x E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
49 nfcv 2612 . . . . . . . 8  |-  F/_ x B
5048, 49nfrab 2958 . . . . . . 7  |-  F/_ x { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
5150nfeq2 2627 . . . . . 6  |-  F/ x  c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
52 nfcv 2612 . . . . . . 7  |-  F/_ y
c
5352, 28rexeqf 2970 . . . . . 6  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( E. y  e.  c 
ph 
<->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5451, 53ralbid 2826 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. x  e.  A  E. y  e.  c  ph 
<-> 
A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5552, 28raleqf 2969 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
5645, 54, 553anbi123d 1365 . . . 4  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) ) )
5756spcegv 3121 . . 3  |-  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  ->  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )  ->  E. c
( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
5857imp 436 . 2  |-  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  /\  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
591, 44, 58syl2an 485 1  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031   [.wsbc 3255    C_ wss 3390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-in 3397  df-ss 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator